Dieter Kressler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9505708/publications.pdf Version: 2024-02-01

NIFTED KDESSIED

#	Article	IF	CITATIONS
1	Driving ribosome assembly. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 673-683.	1.9	411
2	Visualizing the Assembly Pathway of Nucleolar Pre-60S Ribosomes. Cell, 2017, 171, 1599-1610.e14.	13.5	162
3	A Puzzle of Life: Crafting Ribosomal Subunits. Trends in Biochemical Sciences, 2017, 42, 640-654.	3.7	159
4	Mechanochemical Removal of Ribosome Biogenesis Factors from Nascent 60S Ribosomal Subunits. Cell, 2009, 138, 911-922.	13.5	141
5	Synchronizing Nuclear Import of Ribosomal Proteins with Ribosome Assembly. Science, 2012, 338, 666-671.	6.0	95
6	Formation and Nuclear Export of Preribosomes Are Functionally Linked to the Small-Ubiquitin-Related Modifier Pathway. Traffic, 2006, 7, 1311-1321.	1.3	87
7	Spb4p, an essential putative RNA helicase, is required for a late step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. Rna, 1998, 4, 1268-1281.	1.6	81
8	Processing of preribosomal <scp>RNA</scp> in <i>Saccharomyces cerevisiae</i> . Wiley Interdisciplinary Reviews RNA, 2015, 6, 191-209.	3.2	80
9	The power of AAA-ATPases on the road of pre-60S ribosome maturation — Molecular machines that strip pre-ribosomal particles. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 92-100.	1.9	79
10	Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones. Nature Communications, 2015, 6, 7494.	5.8	63
11	Linear ubiquitin fusion to Rps31 and its subsequent cleavage are required for the efficient production and functional integrity of 40S ribosomal subunits. Molecular Microbiology, 2009, 72, 69-84.	1.2	61
12	The Dedicated Chaperone Acl4 Escorts Ribosomal Protein Rpl4 to Its Nuclear Pre-60S Assembly Site. PLoS Genetics, 2015, 11, e1005565.	1.5	59
13	Yar1 Protects the Ribosomal Protein Rps3 from Aggregation. Journal of Biological Chemistry, 2012, 287, 21806-21815.	1.6	58
14	Sequential domain assembly of ribosomal protein S3 drives 40S subunit maturation. Nature Communications, 2016, 7, 10336.	5.8	55
15	Hold on to your friends: Dedicated chaperones of ribosomal proteins. BioEssays, 2017, 39, 1-12.	1.2	54
16	Final Pre-40S Maturation Depends on the Functional Integrity of the 60S Subunit Ribosomal Protein L3. PLoS Genetics, 2014, 10, e1004205.	1.5	52
17	Symportin 1 chaperones 5S RNP assembly during ribosome biogenesis by occupying an essential rRNA-binding site. Nature Communications, 2015, 6, 6510.	5.8	51
18	Functional analysis of Saccharomyces cerevisiae ribosomal protein Rpl3p in ribosome synthesis. Nucleic Acids Research, 2007, 35, 4203-4213.	6.5	50

DIETER KRESSLER

#	Article	IF	CITATIONS
19	Yeast Ribosomal Protein L40 Assembles Late into Precursor 60 S Ribosomes and Is Required for Their Cytoplasmic Maturation*. Journal of Biological Chemistry, 2012, 287, 38390-38407.	1.6	45
20	Conformational proofreading of distant 40S ribosomal subunit maturation events by a long-range communication mechanism. Nature Communications, 2019, 10, 2754.	5.8	40
21	Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME. Nucleic Acids Research, 2019, 47, 6984-7002.	6.5	28
22	New twist to nuclear import: When two travel together. Communicative and Integrative Biology, 2013, 6, e24792.	0.6	26
23	Nuclear import of dimerized ribosomal protein Rps3 in complex with its chaperone Yar1. Scientific Reports, 2016, 6, 36714.	1.6	26
24	The Ubiquitin Moiety of Ubi1 Is Required for Productive Expression of Ribosomal Protein eL40 in Saccharomyces cerevisiae. Cells, 2019, 8, 850.	1.8	23
25	Suppressor mutations in Rpf2–Rrs1 or Rpl5 bypass the Cgr1 function for pre-ribosomal 5S RNP-rotation. Nature Communications, 2018, 9, 4094.	5.8	22
26	Mutational Uncoupling of the Role of Sus1 in Nuclear Pore Complex Targeting of an mRNA Export Complex and Histone H2B Deubiquitination. Journal of Biological Chemistry, 2009, 284, 12049-12056.	1.6	21
27	The eukaryote-specific N-terminal extension of ribosomal protein S31 contributes to the assembly and function of 40S ribosomal subunits. Nucleic Acids Research, 2016, 44, 7777-7791.	6.5	17
28	An ATP-dependent partner switch links flagellar C-ring assembly with gene expression. Proceedings of the United States of America, 2020, 117, 20826-20835.	3.3	17
29	Ubiquitin and Ubiquitin-Like Proteins and Domains in Ribosome Production and Function: Chance or Necessity?. International Journal of Molecular Sciences, 2021, 22, 4359.	1.8	17
30	Global phosphoproteomics pinpoints uncharted Gcn2-mediated mechanisms of translational control. Molecular Cell, 2021, 81, 1879-1889.e6.	4.5	16
31	Ubiquitin release from <scp>eL</scp> 40 is required for cytoplasmic maturation and function of 60S ribosomal subunits in <i>SaccharomycesÂcerevisiae</i> . FEBS Journal, 2020, 287, 345-360.	2.2	15
32	Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis. ELife, 2022, 11, .	2.8	11
33	Androglobin, a chimeric mammalian globin, is required for male fertility. ELife, 0, 11, .	2.8	9
34	A functional connection between translation elongation and protein folding at the ribosome exit tunnel in <i>Saccharomyces cerevisiae</i> . Nucleic Acids Research, 2021, 49, 206-220.	6.5	6