Lawrence P Kane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/95054/publications.pdf

Version: 2024-02-01

80 papers 6,704 citations

39 h-index 77 g-index

141 all docs

141 docs citations

times ranked

141

8625 citing authors

#	Article	IF	CITATIONS
1	Induction of NF-κB by the Akt/PKB kinase. Current Biology, 1999, 9, 601-S1.	1.8	819
2	Promotion of Tissue Inflammation by the Immune Receptor Tim-3 Expressed on Innate Immune Cells. Science, 2007, 318, 1141-1143.	6.0	623
3	Signal transduction by the TCR for antigen. Current Opinion in Immunology, 2000, 12, 242-249.	2.4	456
4	Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN- \hat{l}^3 but not TH2 cytokines. Nature Immunology, 2001, 2, 37-44.	7.0	294
5	Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncolmmunology, 2017, 6, e1261779.	2.1	235
6	The PI-3â€∫kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunological Reviews, 2003, 192, 7-20.	2.8	227
7	Phosphotyrosine-Dependent Coupling of Tim-3 to T-Cell Receptor Signaling Pathways. Molecular and Cellular Biology, 2011, 31, 3963-3974.	1.1	218
8	TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action. International Journal of Molecular Sciences, 2017, 18, 645.	1.8	193
9	PD-1/SHP-2 Inhibits Tc1/Th1 Phenotypic Responses and the Activation of T Cells in the Tumor Microenvironment. Cancer Research, 2015, 75, 508-518.	0.4	184
10	lt's all Rel-ative: NF-κB and CD28 costimulation of T-cell activation. Trends in Immunology, 2002, 23, 413-420.	2.9	173
11	Dominant Role of Antigen Dose in CD4+Foxp3+ Regulatory T Cell Induction and Expansion. Journal of Immunology, 2009, 183, 4895-4903.	0.4	158
12	Oral epithelial cells orchestrate innate type 17 responses to <i>Candida albicans</i> through the virulence factor candidalysin. Science Immunology, 2017, 2, .	5 . 6	154
13	Too Much of a Good Thing? Tim-3 and TCR Signaling in T Cell Exhaustion. Journal of Immunology, 2014, 193, 1525-1530.	0.4	149
14	Akt-Dependent Phosphorylation Specifically Regulates Cot Induction of NF-κB-Dependent Transcription. Molecular and Cellular Biology, 2002, 22, 5962-5974.	1.1	140
15	T cell Ig and mucin 1 (TIM-1) is expressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17113-17118.	3 . 3	133
16	Tim-3 co-stimulation promotes short-lived effector T cells, restricts memory precursors, and is dispensable for T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2455-2460.	3.3	124
17	A Nck-Pak1 signaling module is required for T-cell receptor-mediated activation of NFAT, but not of JNK. EMBO Journal, 1998, 17, 5647-5657.	3.5	121
18	Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nature Medicine, 2001, 7, 725-731.	15.2	120

#	Article	IF	Citations
19	IL-17RC Is Required for Immune Signaling via an Extended SEF/IL-17R Signaling Domain in the Cytoplasmic Tail. Journal of Immunology, 2010, 185, 1063-1070.	0.4	114
20	T Cell Receptor–Dependent Activation of mTOR Signaling in T Cells Is Mediated by Carma1 and MALT1, But Not Bcl10. Science Signaling, 2014, 7, ra55.	1.6	99
21	The Duration of T Cell Stimulation Is a Critical Determinant of Cell Fate and Plasticity. Science Signaling, 2013, 6, ra97.	1.6	98
22	Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. Journal of Clinical Investigation, 2018, 128, 4884-4897.	3.9	95
23	Galectin-9 regulates T helper cell function independently of Tim-3. Glycobiology, 2011, 21, 1258-1265.	1.3	92
24	Tim-3 enhances $Fc\hat{l}\mu Rl$ -proximal signaling to modulate mast cell activation. Journal of Experimental Medicine, 2015, 212, 2289-2304.	4.2	91
25	Increased PD-1+ and TIM-3+ TILs during Cetuximab Therapy Inversely Correlate with Response in Head and Neck Cancer Patients. Cancer Immunology Research, 2017, 5, 408-416.	1.6	84
26	Novel Effector Phenotype of Tim-3+ Regulatory T Cells Leads to Enhanced Suppressive Function in Head and Neck Cancer Patients. Clinical Cancer Research, 2018, 24, 4529-4538.	3.2	82
27	Expression and Function of Tec, Itk, and Btk in Lymphocytes: Evidence for a Unique Role for Tec. Molecular and Cellular Biology, 2004, 24, 2455-2466.	1.1	81
28	CARMA1 Is Required for Akt-Mediated NF-κB Activation in T Cells. Molecular and Cellular Biology, 2006, 26, 2327-2336.	1.1	78
29	Regulation of NF-κB induction by TCR/CD28. Immunologic Research, 2011, 50, 113-117.	1.3	69
30	Immune regulation by Tim-3. F1000Research, 2018, 7, 316.	0.8	68
31	T Cell Ig and Mucin Domain Proteins and Immunity. Journal of Immunology, 2010, 184, 2743-2749.	0.4	66
32	TIM-1 and TIM-3 proteins in immune regulation. Cytokine, 2008, 44, 9-13.	1.4	61
33	Intracellular signals that mediate thymic negative selection. Immunity, 1994, 1, 45-56.	6.6	56
34	T Cell Ig and Mucin Domain-1-Mediated T Cell Activation Requires Recruitment and Activation of Phosphoinositide 3-Kinase. Journal of Immunology, 2008, 180, 6518-6526.	0.4	56
35	Distinct regions in the CD28 cytoplasmic domain are required for T helper type 2 differentiation. Nature Immunology, 2004, 5, 435-442.	7.0	53
36	Akt Fine-tunes NF-κB-dependent Gene Expression during T Cell Activation. Journal of Biological Chemistry, 2011, 286, 36076-36085.	1.6	52

#	Article	IF	CITATIONS
37	Cutting Edge: Differential Regulation of PTEN by TCR, Akt, and FoxO1 Controls CD4+ T Cell Fate Decisions. Journal of Immunology, 2015, 194, 4615-4619.	0.4	50
38	TIM polymorphismsâ€"genetics and function. Genes and Immunity, 2011, 12, 595-604.	2.2	47
39	Tumor-infiltrating Tim-3 ⁺ T cells proliferate avidly except when PD-1 is co-expressed: Evidence for intracellular cross talk. Oncolmmunology, 2016, 5, e1200778.	2.1	47
40	Cutting Edge: Inhibition of T Cell Activation by TIM-2. Journal of Immunology, 2006, 177, 4966-4970.	0.4	40
41	Effects of a Constitutively Active Form of Calcineurin on T Cell Activation and Thymic Selection. Journal of Immunology, 2000, 165, 3713-3721.	0.4	37
42	Expression of Tim-3 drives phenotypic and functional changes in Treg cells in secondary lymphoid organs and the tumor microenvironment. Cell Reports, 2021, 36, 109699.	2.9	37
43	Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling. Brain, 2010, 133, 375-388.	3.7	36
44	Cutting Edge: Murine Mast Cells Rapidly Modulate Metabolic Pathways Essential for Distinct Effector Functions. Journal of Immunology, 2017, 198, 640-644.	0.4	34
45	Inhibition of <scp>T</scp> â€eell activation by <scp>PIK</scp> 3 <scp>IP</scp> 1. European Journal of Immunology, 2012, 42, 2754-2759.	1.6	33
46	A Proline-Rich Motif in the C Terminus of Akt Contributes to Its Localization in the Immunological Synapse. Journal of Immunology, 2004, 172, 5441-5449.	0.4	32
47	Thrombospondin expression in traumatized skeletal muscle. Cell and Tissue Research, 1990, 261, 73-84.	1.5	30
48	PIK3IP1/TrIP restricts activation of T cells through inhibition of PI3K/Akt. Journal of Experimental Medicine, 2018, 215, 3165-3179.	4.2	30
49	Noncanonical STAT3 activity sustains pathogenic Th17 proliferation and cytokine response to antigen. Journal of Experimental Medicine, 2020, 217, .	4.2	30
50	Cellular and biochemical requirements for thymocyte negative selection. Seminars in Immunology, 1996, 8, 69-82.	2.7	27
51	Tim-3 mediates T cell trogocytosis to limit antitumor immunity. Journal of Clinical Investigation, 2022, 132, .	3.9	25
52	The costimulatory activity of Tim-3 requires Akt and MAPK signaling and its recruitment to the immune synapse. Science Signaling, 2021, 14, .	1.6	22
53	Complement Component C5a Permits the Coexistence of Pathogenic Th17 Cells and Type I IFN in Lupus. Journal of Immunology, 2014, 193, 3288-3295.	0.4	21
54	Dynamic Regulation of Tec Kinase Localization in Membrane-proximal Vesicles of a T Cell Clone Revealed by Total Internal Reflection Fluorescence and Confocal Microscopy. Journal of Biological Chemistry, 2005, 280, 21949-21954.	1.6	18

#	Article	IF	Citations
55	Glial TIM-3 Modulates Immune Responses in the Brain Tumor Microenvironment. Cancer Research, 2020, 80, 1833-1845.	0.4	18
56	Immune Regulation by the TIM Gene Family. Immunologic Research, 2006, 36, 147-156.	1.3	17
57	TIM3 expression by leukemic and nonâ€leukemic myeloblasts. Cytometry Part B - Clinical Cytometry, 2013, 84B, 167-172.	0.7	17
58	Dose-Dependent Suppression of Cytokine production from T cells by a Novel Phosphoinositide 3-Kinase Delta Inhibitor. Scientific Reports, 2016, 6, 30384.	1.6	17
59	Aberrant TGF- \hat{l}^2 signaling reduces T regulatory cells in ICAM-1-deficient mice, increasing the inflammatory response to <i>Mycobacterium tuberculosis</i> . Journal of Leukocyte Biology, 2009, 86, 713-725.	1.5	16
60	IL-17 Signaling Triggers Degradation of the Constitutive NF-κB Inhibitor ABIN-1. ImmunoHorizons, 2017, 1, 133-141.	0.8	16
61	Phosphorylation of Carma1, but not Bcl10, by Akt regulates TCR/CD28-mediated NF-κB induction and cytokine production. Molecular Immunology, 2014, 59, 110-116.	1.0	14
62	The Alzheimer's Disease–Associated Protein BACE1 Modulates T Cell Activation and Th17 Function. Journal of Immunology, 2019, 203, 665-675.	0.4	10
63	TIMâ€3–Expressing Mast Cells Are Present in Chronic Rhinosinusitis with Nasal Polyps. Otolaryngology - Head and Neck Surgery, 2018, 159, 581-586.	1.1	9
64	Inducible turnover of optineurin regulates T cell activation. Molecular Immunology, 2017, 85, 9-17.	1.0	8
65	Differential Expression of Immune Checkpoint Molecules on CD8 ⁺ T Cells Specific for Immunodominant and Subdominant Herpes Simplex Virus 1 Epitopes. Journal of Virology, 2020, 94, .	1.5	6
66	Control of T lymphocyte fate decisions by PI3K signaling. F1000Research, 2020, 9, 1171.	0.8	6
67	TIM family proteins and autoimmunity. Autoimmunity, 2007, 40, 405-408.	1.2	5
68	PIK3IP1 Promotes Extrafollicular Class Switching in T-Dependent Immune Responses. Journal of Immunology, 2020, 205, 2100-2108.	0.4	5
69	Murine Tim-1 is excluded from the immunological synapse. F1000Research, 2012, 1, 10.	0.8	5
70	Global identification of genes and pathways regulated by Akt during activation of T helper cells. F1000Research, 2013, 2, 109.	0.8	5
71	A predicted Francisella tularensis DXD-motif glycosyltransferase blocks immune activation. Virulence, 2019, 10, 643-656.	1.8	3
72	Association of Mast Cell Burden and TIM-3 Expression with Recalcitrant Chronic Rhinosinusitis with Nasal Polyps. Annals of Otology, Rhinology and Laryngology, 2021, 130, 1069-1077.	0.6	2

#	Article	IF	CITATIONS
73	Mast cell activation is enhanced by Tim1:Tim4 interaction but not by Tim-1 antibodies. F1000Research, 2016, 5, 251.	0.8	2
74	Mast cell activation is enhanced by Tim1:Tim4 interaction but not by Tim-1 antibodies. F1000Research, 2016, 5, 251.	0.8	2
75	Regulation of Tim-3 function by binding to phosphatidylserine. Biochemical Journal, 2021, 478, 3999-4004.	1.7	2
76	Correction: T Cell Ig and Mucin Domain Proteins and Immunity. Journal of Immunology, 2012, 189, 4695-4695.	0.4	1
77	Antigen Receptor Kinase Two-Step. Journal of Immunology, 2014, 193, 4277-4278.	0.4	1
78	Reversing T Cell Dysfunction for Tumor Immunotherapy. , 2016, , 109-128.		0
79	TIMâ€1 signaling in T cell activation. FASEB Journal, 2008, 22, 663.26.	0.2	0
80	Timâ€3 Signaling in T cells and Dendritic Cells. FASEB Journal, 2008, 22, 663.16.	0.2	0