Davide Fontanarosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/950525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasound Imaging Offers Promising Alternative to Create 3-D Models for Personalised Auricular Implants. Ultrasound in Medicine and Biology, 2022, 48, 450-459.	0.7	2
2	Relationship between placental elastography, maternal pre-pregnancy body mass index and gestational weight gain. Placenta, 2022, 121, 1-6.	0.7	8
3	Impact of dose reducing software on patient and staff temple dose during fluoroscopically guided pacemaker insertion, closure devices implantation and coronary angiography procedures. Physical and Engineering Sciences in Medicine, 2022, , 1.	1.3	0
4	Automatic 3D MRI-Ultrasound Registration for Image Guided Arthroscopy. Applied Sciences (Switzerland), 2022, 12, 5488.	1.3	2
5	Evaluating the Impact of Calcification on Plaque Vulnerability from the Aspect of Mechanical Interaction Between Blood Flow and Artery Based on MRI. Annals of Biomedical Engineering, 2021, 49, 1169-1182.	1.3	14
6	Feasibility of using a novel automatic cardiac segmentation algorithm in the clinical routine of lung cancer patients. PLoS ONE, 2021, 16, e0245364.	1.1	4
7	Deep Learning-Based Automatic Segmentation for Reconstructing Vertebral Anatomy of Healthy Adolescents and Patients With Adolescent Idiopathic Scoliosis (AIS) Using MRI Data. IEEE Access, 2021, 9, 86811-86823.	2.6	2
8	Automatic deep learning-based pleural effusion classification in lung ultrasound images for respiratory pathology diagnosis. Physica Medica, 2021, 83, 38-45.	0.4	26
9	Intra-System Reliability Assessment of 2-Dimensional Shear Wave Elastography. Applied Sciences (Switzerland), 2021, 11, 2992.	1.3	6
10	In the future, ultrasound guidance in radiotherapy will become a clinical standard. Physical and Engineering Sciences in Medicine, 2021, 44, 347-350.	1.3	2
11	Queensland Family Cohort: a study protocol. BMJ Open, 2021, 11, e044463.	0.8	14
12	Arthroscope Localization in 3D Ultrasound Volumes Using Weakly Supervised Deep Learning. Applied Sciences (Switzerland), 2021, 11, 6828.	1.3	0
13	Occupational and Patient Radiation Dose and Quality Implications of Femoral Access Imaging During Coronary Angiography. Journal of Multidisciplinary Healthcare, 2021, Volume 14, 1807-1818.	1.1	5
14	Changes in placental elastography in the third trimester - Analysis using a linear mixed effect model. Placenta, 2021, 114, 83-89.	0.7	6
15	Investigation of scattered dose in a mouse phantom model for pre-clinical dosimetry studies. Radiation Physics and Chemistry, 2021, 189, 109691.	1.4	2
16	Radiation dose to nurses, cardiologists, and patients during coronary angiography: a comparison of femoral and radial access. European Journal of Cardiovascular Nursing, 2021, , .	0.4	0
17	Comparison of patient and staff temple dose during fluoroscopically guided coronary angiography, implantable cardiac devices, and electrophysiology procedures. Physica Medica, 2021, 90, 142-149.	0.4	0

2

DAVIDE FONTANAROSA

#	Article	IF	CITATIONS
19	The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Biomechanics and Modeling in Mechanobiology, 2020, 19, 1477-1490.	1.4	36
20	Siam-U-Net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images. Medical Image Analysis, 2020, 60, 101631.	7.0	55
21	Automatic Quality Assessment of Transperineal Ultrasound Images of the Male Pelvic Region, Using Deep Learning. Ultrasound in Medicine and Biology, 2020, 46, 445-454.	0.7	11
22	Deep Learning-Based Femoral Cartilage Automatic Segmentation in Ultrasound Imaging for Guidance in Robotic Knee Arthroscopy. Ultrasound in Medicine and Biology, 2020, 46, 422-435.	0.7	27
23	Taller staff occupationally exposed to less radiation to the temple in cardiac procedures, but risk higher doses during vascular cases. Scientific Reports, 2020, 10, 16103.	1.6	3
24	The use of elastography in placental research – A literature review. Placenta, 2020, 99, 78-88.	0.7	21
25	4D Ultrasound-Based Knee Joint Atlas for Robotic Knee Arthroscopy: A Feasibility Study. IEEE Access, 2020, 8, 146331-146341.	2.6	7
26	Variations of Clinical Target Volume Delineation for Primary Site of Nasopharyngeal Cancer Among Five Centers in China. Frontiers in Oncology, 2020, 10, 1572.	1.3	7
27	Impact of Positioning Errors on the Dosimetry of Breath-Hold-Based Volumetric Arc Modulated and Tangential Field-in-Field Left-Sided Breast Treatments. Frontiers in Oncology, 2020, 10, 554131.	1.3	8
28	Deep Learning for US Image Quality Assessment Based on Femoral Cartilage Boundary Detection in Autonomous Knee Arthroscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2543-2552.	1.7	6
29	A novel addâ€on collimator for preclinical radiotherapy applications using a standard cell irradiator: design, construction, and validation. Medical Physics, 2020, 47, 2461-2471.	1.6	4
30	Bayesian CNN for Segmentation Uncertainty Inference on 4D Ultrasound Images of the Femoral Cartilage for Guidance in Robotic Knee Arthroscopy. IEEE Access, 2020, 8, 223961-223975.	2.6	13
31	Feasibility of Using a Novel Automatic Cardiac Segmentation Algorithm in the Clinical Routine of Lung Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2019, 105, E724-E725.	0.4	Ο
32	Occupational radiation exposure to the head is higher for scrub nurses than cardiologists during cardiac angiography. Journal of Advanced Nursing, 2019, 75, 2692-2700.	1.5	11
33	Real-time adaptive planning method for radiotherapy treatment delivery for prostate cancer patients, based on a library of plans accounting for possible anatomy configuration changes. PLoS ONE, 2019, 14, e0213002.	1.1	14
34	Segmentation of Femoral Cartilage from Knee Ultrasound Images Using Mask R-CNN. , 2019, 2019, 966-969.		16
35	Comparison between Conventional IMRT Planning and a Novel Real-Time Adaptive Planning Strategy in Hypofractionated Regimes for Prostate Cancer: A Proof-of-Concept Planning Study. Healthcare (Switzerland), 2019, 7, 153.	1.0	1
36	Ultrasound guidance in minimally invasive robotic procedures. Medical Image Analysis, 2019, 54, 149-167.	7.0	38

#	Article	IF	CITATIONS
37	Quality Assessment of Transperineal Ultrasound Images of the Male Pelvic Region Using Deep Learning. , 2018, , .		0
38	Occupational radiation exposure to nursing staff during cardiovascular fluoroscopic procedures: A review of the literature. Journal of Applied Clinical Medical Physics, 2018, 19, 282-297.	0.8	11
39	Automated patientâ€specific transperineal ultrasound probe setups for prostate cancer patients undergoing radiotherapy. Medical Physics, 2018, 45, 3185-3195.	1.6	3
40	The Use of Ultrasound Imaging in the External Beam Radiotherapy Workflow of Prostate Cancer Patients. BioMed Research International, 2018, 2018, 1-16.	0.9	30
41	CT based prostate cancer patient-specific transperineal ultrasound probe setups for image guided radiotherapy. , 2017, , .		0
42	CT scan based prostate cancer patient-specific transperineal ultrasound probe setups for image guided radiotherapy. , 2017, , .		0
43	Automatic transperineal ultrasound probe positioning based on CT scan for image guided radiotherapy. , 2017, , .		2
44	Various approaches for pseudo-CT scan creation based on ultrasound to ultrasound deformable image registration between different treatment time points for radiotherapy treatment plan adaptation in prostate cancer patients. Biomedical Physics and Engineering Express, 2016, 2, 035018.	0.6	7
45	Simulation of pseudoâ€CT images based on deformable image registration of ultrasound images: A proof of concept for transabdominal ultrasound imaging of the prostate during radiotherapy. Medical Physics, 2016, 43, 1913-1920.	1.6	16
46	Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications. Physics in Medicine and Biology, 2016, 61, R90-R137.	1.6	80
47	Consequences of Intermodality Registration Errors for Intramodality 3D Ultrasound IGRT. Technology in Cancer Research and Treatment, 2016, 15, 632-638.	0.8	3
48	Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management. Physics in Medicine and Biology, 2015, 60, R77-R114.	1.6	82
49	Automated Computed Tomography–Ultrasound Cross-Modality 3-D Contouring Algorithm for Prostate. Ultrasound in Medicine and Biology, 2015, 41, 2646-2662.	0.7	1
50	Probabilistic evaluation of target dose deterioration in dose painting by numbers for stage II/III lung cancer. Practical Radiation Oncology, 2015, 5, e375-e382.	1.1	7
51	Validation of nonrigid registration in pretreatment and followâ€up PET/CT scans for quantification of tumor residue in lung cancer patients. Journal of Applied Clinical Medical Physics, 2014, 15, 240-250.	0.8	5
52	Active Breathing Control in Combination With Ultrasound Imaging: A Feasibility Study of Image Guidance in Stereotactic Body Radiation Therapy of Liver Lesions. International Journal of Radiation Oncology Biology Physics, 2013, 85, 1096-1102.	0.4	25
53	An in silico comparison between margin-based and probabilistic target-planning approaches in head and neck cancer patients. Radiotherapy and Oncology, 2013, 109, 430-436.	0.3	14
54	Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers. Medical Physics, 2013, 40, 071707.	1.6	41

#	Article	IF	CITATIONS
55	A speed of sound aberration correction algorithm for curvilinear ultrasound transducers in ultrasound-based image-guided radiotherapy. Physics in Medicine and Biology, 2013, 58, 1341-1360.	1.6	15
56	PD-0413: Assessment of overlap between high FDG-uptake areas in deformed pre-treatment and post-treatment PET scans. Radiotherapy and Oncology, 2013, 106, S159.	0.3	0
57	PO-0678: Dose painting by numbers for NSCLC: probabilistic evaluation of the impact of uncertainties on target dose coverage. Radiotherapy and Oncology, 2013, 106, S260.	0.3	0
58	PO-0869: Automated cross-modal 3D contouring algorithm for prostate 3D ultrasound-CT co-registered images. Radiotherapy and Oncology, 2013, 106, S336-S337.	0.3	0
59	PD-0283: 4D dose accumulation for dose painting by numbers for lung cancer. Radiotherapy and Oncology, 2013, 106, S110.	0.3	0
60	MO-F-144-01: Ultrasound Guided Systems for RT and Treatment Planning. Medical Physics, 2013, 40, 415-415.	1.6	0
61	SU-E-U-10: Ultrasound Based Deformable Image Registration: Daily CT Images Derived From Daily IGRT Ultrasound. Medical Physics, 2013, 40, 375-375.	1.6	0
62	Magnitude of speed of sound aberration corrections for ultrasound image guided radiotherapy for prostate and other anatomical sites. Medical Physics, 2012, 39, 5286-5292.	1.6	17
63	On the significance of densityâ€induced speed of sound variations on USâ€guided radiotherapy. Medical Physics, 2012, 39, 6316-6323.	1.6	12
64	WE-A-BRA-03: Towards Real-Time Ultrasound Image-Guided Abdominal Radiotherapy. Medical Physics, 2012, 39, 3934-3934.	1.6	0
65	TH-E-218-03: On the Significance of Density-Induced Speed of Sound Variations on Ultrasound-Guided Radiotherapy. Medical Physics, 2012, 39, 4018-4018.	1.6	0
66	529 oral CLINICAL EVALUATION OF A SPEED OF SOUND ABERRATION CORRECTION ALGORITHM IN QUANTITATIVE ULTRASOUND-AIDED IMAGE GUIDED RADIOTHERAPY Radiotherapy and Oncology, 2011, 99, S215.	0.3	0
67	A CT based correction method for speed of sound aberration for ultrasound based image guided radiotherapy. Medical Physics, 2011, 38, 2665-2673.	1.6	29
68	Preliminary Studies for a CBCT Imaging Protocol for Offline Organ Motion Analysis: Registration Software Validation and CTDI Measurements. Medical Dosimetry, 2011, 36, 91-101.	0.4	12
69	TU-A-220-02: Speed of Sound Aberration Correction in Quantitative Ultrasound-Aided Image Guided Radiotherapy. Medical Physics, 2011, 38, 3747-3747.	1.6	0
70	Commissioning Varian enhanced dynamic wedge in the PINNACLE treatment planning system using Gafchromicâ,,¢ EBT film. Medical Physics, 2009, 36, 4504-4510.	1.6	14
71	PhoNeS: A novel approach to BNCT with conventional radiotherapy accelerators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 572, 231-232.	0.7	19
72	Development of a flexible MAPMT photon-counting read-out system. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 545, 375-382.	0.7	1