Peter A Stott

List of Publications by Citations

Source: https://exaly.com/author-pdf/9504970/peter-a-stott-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 168
 13,887
 55
 116

 papers
 citations
 h-index
 g-index

 179
 15,645
 9.8
 6.71

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
168	Human contribution to the European heatwave of 2003. <i>Nature</i> , 2004 , 432, 610-4	50.4	990
167	Detection of human influence on twentieth-century precipitation trends. <i>Nature</i> , 2007 , 448, 461-5	50.4	743
166	Detection of a direct carbon dioxide effect in continental river runoff records. <i>Nature</i> , 2006 , 439, 835-8	50.4	628
165	Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. <i>Nature</i> , 2011 , 470, 382-5	50.4	608
164	The proportionality of global warming to cumulative carbon emissions. <i>Nature</i> , 2009 , 459, 829-32	50.4	565
163	Quantifying the uncertainty in forecasts of anthropogenic climate change. <i>Nature</i> , 2000 , 407, 617-20	50.4	522
162	External control of 20th century temperature by natural and anthropogenic forcings. <i>Science</i> , 2000 , 290, 2133-7	33.3	491
161	Causes of twentieth-century temperature change near the Earth's surface. <i>Nature</i> , 1999 , 399, 569-572	50.4	420
160	Estimating signal amplitudes in optimal fingerprinting, part I: theory. Climate Dynamics, 2003, 21, 477-4	94.2	309
159	Attribution of extreme weather and climate-related events. <i>Wiley Interdisciplinary Reviews: Climate Change</i> , 2016 , 7, 23-41	8.4	285
158	Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. <i>Nature</i> , 2002 , 416, 723-6	50.4	271
157	Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. <i>Nature Climate Change</i> , 2015 , 5, 46-50	21.4	266
156	CLIMATE CHANGE. How climate change affects extreme weather events. <i>Science</i> , 2016 , 352, 1517-8	33.3	252
155	Explaining Extreme Events of 2011 from a Climate Perspective. <i>Bulletin of the American Meteorological Society</i> , 2012 , 93, 1041-1067	6.1	251
154	Identification of human-induced changes in atmospheric moisture content. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 15248-53	11.5	234
153	Detection and attribution of climate change: a regional perspective. <i>Wiley Interdisciplinary Reviews: Climate Change</i> , 2010 , 1, 192-211	8.4	206
152	Explaining Extreme Events of 2012 from a Climate Perspective. <i>Bulletin of the American Meteorological Society</i> , 2013 , 94, S1-S74	6.1	198

(2011-2016)

151	Human influence on climate in the 2014 southern England winter floods and their impacts. <i>Nature Climate Change</i> , 2016 , 6, 627-634	21.4	189
150	Anthropogenic impact on Earth⊠ hydrological cycle. <i>Nature Climate Change</i> , 2013 , 3, 807-810	21.4	185
149	Estimation of natural and anthropogenic contributions to twentieth century temperature change. Journal of Geophysical Research, 2002 , 107, ACL 10-1		181
148	A Review of Uncertainties in Global Temperature Projections over the Twenty-First Century. Journal of Climate, 2008 , 21, 2651-2663	4.4	180
147	Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	171
146	Detection of human influence on sea-level pressure. <i>Nature</i> , 2003 , 422, 292-4	50.4	169
145	Challenges in Quantifying Changes in the Global Water Cycle. <i>Bulletin of the American Meteorological Society</i> , 2015 , 96, 1097-1115	6.1	168
144	Attribution of polar warming to human influence. <i>Nature Geoscience</i> , 2008 , 1, 750-754	18.3	167
143	Detectability of Anthropogenic Changes in Annual Temperature and Precipitation Extremes. Journal of Climate, 2004 , 17, 3683-3700	4.4	166
142	Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 400	14402	4 ¹⁶⁵
141	Observational Constraints on Past Attributable Warming and Predictions of Future Global Warming. <i>Journal of Climate</i> , 2006 , 19, 3055-3069	4.4	148
140	Explaining Extreme Events of 2013 from a Climate Perspective. <i>Bulletin of the American Meteorological Society</i> , 2014 , 95, S1-S104	6.1	146
139	Incorporating model quality information in climate change detection and attribution studies. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 14778-83	11.5	137
138	Separating signal and noise in atmospheric temperature changes: The importance of timescale. <i>Journal of Geophysical Research</i> , 2011 , 116, n/a-n/a		125
137	Potential influences on the United Kingdom's floods of winter 2013/14. <i>Nature Climate Change</i> , 2014 , 4, 769-777	21.4	122
136	Attribution of regional-scale temperature changes to anthropogenic and natural causes. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	122
135	Detection of changes in temperature extremes during the second half of the 20th century. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	116
134	The Role of Human Activity in the Recent Warming of Extremely Warm Daytime Temperatures. Journal of Climate, 2011 , 24, 1922-1930	4.4	107

133	A New HadGEM3-A-Based System for Attribution of Weather- and Climate-Related Extreme Events. Journal of Climate, 2013 , 26, 2756-2783	4.4	105
132	Human influence on increasing Arctic river discharges. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	105
131	Identifying human influences on atmospheric temperature. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 26-33	11.5	102
130	Transient Climate Simulations with the HadGEM1 Climate Model: Causes of Past Warming and Future Climate Change. <i>Journal of Climate</i> , 2006 , 19, 2763-2782	4.4	101
129	Scale-Dependent Detection of Climate Change. <i>Journal of Climate</i> , 1998 , 11, 3282-3294	4.4	99
128	Simulated and observed decadal variability in ocean heat content. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	86
127	Introduction to Explaining Extreme Events of 2014 from a Climate Perspective. <i>Bulletin of the American Meteorological Society</i> , 2015 , 96, S1-S4	6.1	84
126	An AOGCM simulation of the climate response to a volcanic super-eruption. <i>Climate Dynamics</i> , 2005 , 25, 725-738	4.2	83
125	Detection of a human influence on North American climate. <i>Science</i> , 2003 , 302, 1200-3	33.3	82
124	Detection and attribution of changes in 20th century land precipitation. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	78
123	Do Models Underestimate the Solar Contribution to Recent Climate Change?. <i>Journal of Climate</i> , 2003 , 16, 4079-4093	4.4	77
122	Explaining Extreme Events of 2015 from a Climate Perspective. <i>Bulletin of the American Meteorological Society</i> , 2016 , 97, S1-S145	6.1	77
121	Can the 2011 East African drought be attributed to human-induced climate change?. <i>Geophysical Research Letters</i> , 2013 , 40, 1177-1181	4.9	74
120	Detection and attribution of human influence on regional precipitation. <i>Nature Climate Change</i> , 2016 , 6, 669-675	21.4	67
119	Human Contribution to the Lengthening of the Growing Season during 1950 B 9. <i>Journal of Climate</i> , 2007 , 20, 5441-5454	4.4	66
118	Attribution of Weather and Climate-Related Events 2013 , 307-337		64
117	Introduction to Explaining Extreme Events of 2014 from a Climate Perspective. <i>Bulletin of the American Meteorological Society</i> , 2015 , 96, S1-S4	6.1	64
116	The role of land use change in the recent warming of daily extreme temperatures. <i>Geophysical Research Letters</i> , 2013 , 40, 589-594	4.9	59

(2000-2015)

115	Signatures of naturally induced variability in the atmosphere using multiple reanalysis datasets. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2015 , 141, 2011-2031	6.4	55	
114	The Detection and Attribution of Human Influence on Climate. <i>Annual Review of Environment and Resources</i> , 2009 , 34, 1-16	17.2	55	
113	Detection and Attribution of Observed Changes in Northern Hemisphere Spring Snow Cover. <i>Journal of Climate</i> , 2013 , 26, 6904-6914	4.4	53	
112	Detectable Anthropogenic Shift toward Heavy Precipitation over Eastern China. <i>Journal of Climate</i> , 2017 , 30, 1381-1396	4.4	52	
111	Causes for the recent changes in cold- and heat-related mortality in England and Wales. <i>Climatic Change</i> , 2010 , 102, 539-553	4.5	52	
110	Guiding the Creation of A Comprehensive Surface Temperature Resource for Twenty-First-Century Climate Science. <i>Bulletin of the American Meteorological Society</i> , 2011 , 92, ES40-ES47	6.1	50	
109	Human contribution to rapidly increasing frequency of very warm Northern Hemisphere summers. Journal of Geophysical Research, 2008 , 113,		50	
108	Detection and attribution of Atlantic salinity changes. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	48	
107	Incorporating model uncertainty into attribution of observed temperature change. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	48	
106	Ensemble climate predictions using climate models and observational constraints. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2007 , 365, 2029-52	3	47	
105	Anthropogenic warming of central England temperature. <i>Atmospheric Science Letters</i> , 2006 , 7, 81-85	2.4	44	
104	Estimating signal amplitudes in optimal fingerprinting. Part II: application to general circulation models. <i>Climate Dynamics</i> , 2003 , 21, 493-500	4.2	42	
103	Upgrade of the HadGEM3-A based attribution system to high resolution and a new validation framework for probabilistic event attribution. <i>Weather and Climate Extremes</i> , 2018 , 20, 9-32	6	41	
102	Explaining Extreme Events of 2014 from a Climate Perspective. <i>Bulletin of the American Meteorological Society</i> , 2015 , 96, S1-S172	6.1	40	
101	Quantifying anthropogenic influence on recent near-surface temperature change. <i>Surveys in Geophysics</i> , 2006 , 27, 491-544	7.6	40	
100	The upper end of climate model temperature projections is inconsistent with past warming. <i>Environmental Research Letters</i> , 2013 , 8, 014024	6.2	39	
99	Attribution of anthropogenic influence on seasonal sea level pressure. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	38	
98	Implications of changes in the northern hemisphere circulation for the detection of anthropogenic climate change. <i>Geophysical Research Letters</i> , 2000 , 27, 993-996	4.9	38	

97	Alternatives to stabilization scenarios. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	37
96	Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 799-816	6.8	36
95	The contribution of anthropogenic forcings to regional changes in temperature during the last decade. <i>Climate Dynamics</i> , 2012 , 39, 1259-1274	4.2	35
94	Fingerprints of changes in annual and seasonal precipitation from CMIP5 models over land and ocean. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	34
93	Probable causes of late twentieth century tropospheric temperature trends. <i>Climate Dynamics</i> , 2003 , 21, 573-591	4.2	34
92	Revisiting the controversial issue of tropical tropospheric temperature trends. <i>Geophysical Research Letters</i> , 2013 , 40, 2801-2806	4.9	33
91	Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	33
90	Human activity and anomalously warm seasons in Europe. <i>International Journal of Climatology</i> , 2012 , 32, 225-239	3.5	32
89	Stratospheric temperature trends: impact of ozone variability and the QBO. <i>Climate Dynamics</i> , 2010 , 34, 381-398	4.2	32
88	Single-step attribution of increasing frequencies of very warm regional temperatures to human influence. <i>Atmospheric Science Letters</i> , 2011 , 12, 220-227	2.4	31
87	Impact of Anthropogenic Climate Change on the East Asian Summer Monsoon. <i>Journal of Climate</i> , 2017 , 30, 5205-5220	4.4	30
86	Change in the Odds of Warm Years and Seasons Due to Anthropogenic Influence on the Climate. <i>Journal of Climate</i> , 2014 , 27, 2607-2621	4.4	30
85	Probabilistic estimates of recent changes in temperature: a multi-scale attribution analysis. <i>Climate Dynamics</i> , 2010 , 34, 1139-1156	4.2	29
84	Causes of atmospheric temperature change 1960\(\textit{D}000\): A combined attribution analysis. Geophysical Research Letters, 2003, 30, n/a-n/a	4.9	29
83	What influence will future solar activity changes over the 21st century have on projected global near-surface temperature changes?. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		28
82	A new perspective on warming of the global oceans. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	28
81	Drivers of the UK summer heatwave of 2018. Weather, 2019, 74, 390-396	0.9	27
80	Explaining Extreme Events of 2018 from a Climate Perspective. <i>Bulletin of the American Meteorological Society</i> , 2020 , 101, S1-S140	6.1	26

79	Uncertainty in continental-scale temperature predictions. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	26
78	Does the recent freshening trend in the North Atlantic indicate a weakening thermohaline circulation?. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	26
77	Attribution of climate-related events: understanding stakeholder needs. Weather, 2013, 68, 274-279	0.9	25
76	Estimates of Uncertainty in Predictions of Global Mean Surface Temperature. <i>Journal of Climate</i> , 2007 , 20, 843-855	4.4	25
75	The Detection and Attribution of Climate Change Using an Ensemble of Opportunity. <i>Journal of Climate</i> , 2007 , 20, 504-516	4.4	25
74	Fast-track attribution assessments based on pre-computed estimates of changes in the odds of warm extremes. <i>Climate Dynamics</i> , 2015 , 45, 1547-1564	4.2	24
73	Explaining Extreme Events of 2016 from a Climate Perspective. <i>Bulletin of the American Meteorological Society</i> , 2018 , 99, S1-S157	6.1	24
72	Extreme Rainfall in the United Kingdom During Winter 2013/14: The Role of Atmospheric Circulation and Climate Change. <i>Bulletin of the American Meteorological Society</i> , 2015 , 96, S46-S50	6.1	23
71	Models versus radiosondes in the free atmosphere: A new detection and attribution analysis of temperature. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 2609-2619	4.4	23
70	Human Influence on the 2015 Extreme High Temperature Events in Western China. <i>Bulletin of the American Meteorological Society</i> , 2016 , 97, S102-S106	6.1	22
69	Evaluation of the HadGEM3-A simulations in view of detection and attribution of human influence on extreme events in Europe. <i>Climate Dynamics</i> , 2019 , 52, 1187-1210	4.2	22
68	Tracking uncertainties in the causal chain from human activities to climate. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	22
67	Impact of stratospheric variability on tropospheric climate change. Climate Dynamics, 2010, 34, 399-417	4.2	22
66	Towards advancing scientific knowledge of climate change impacts on short-duration rainfall extremes. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2021 , 379, 20190542	3	22
65	Attribution analyses of temperature extremes using a set of 16 indices. <i>Weather and Climate Extremes</i> , 2016 , 14, 24-35	6	22
64	Attribution of ocean temperature change to anthropogenic and natural forcings using the temporal, vertical and geographical structure. <i>Climate Dynamics</i> , 2019 , 53, 5389-5413	4.2	21
63	Explaining Extreme Events of 2017 from a Climate Perspective. <i>Bulletin of the American Meteorological Society</i> , 2019 , 100, S1-S117	6.1	21
62	Hurricanes Harvey, Irma and Maria: how natural were these 🛭 atural disasters 🗗 Weather, 2017 , 72, 353-3	54 .9	21

61	Changes in the geopotential height at 500 hPa under the influence of external climatic forcings. <i>Geophysical Research Letters</i> , 2015 , 42, 10,798-10,806	4.9	21
60	Uncertainties in the attribution of greenhouse gas warming and implications for climate prediction. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 6969-6992	4.4	20
59	Evaluating Simulated Fraction of Attributable Risk Using Climate Observations. <i>Journal of Climate</i> , 2016 , 29, 4565-4575	4.4	20
58	Unusual past dry and wet rainy seasons over Southern Africa and South America from a climate perspective. <i>Weather and Climate Extremes</i> , 2015 , 9, 36-46	6	19
57	The Effect of Local Circulation Variability on the Detection and Attribution of New Zealand Temperature Trends. <i>Journal of Climate</i> , 2009 , 22, 6217-6229	4.4	19
56	Comparison of land surface humidity between observations and CMIP5 models. <i>Earth System Dynamics</i> , 2017 , 8, 719-747	4.8	18
55	How best to log local temperatures?. <i>Nature</i> , 2010 , 465, 158-9	50.4	18
54	Difficult but not impossible. <i>Nature Climate Change</i> , 2011 , 1, 72-72	21.4	18
53	The increasing likelihood of temperatures above 30 to 40 LC in the United Kingdom. <i>Nature Communications</i> , 2020 , 11, 3093	17.4	18
52	Early benefits of mitigation in risk of regional climate extremes. <i>Nature Climate Change</i> , 2017 , 7, 326-3	30 _{1.4}	17
51	A Multimodel Update on the Detection and Attribution of Global Surface Warming. <i>Journal of Climate</i> , 2007 , 20, 517-530	4.4	17
50	Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-n/a	4.9	16
49	Attribution of Extreme Rainfall in Southeast China During May 2015. <i>Bulletin of the American Meteorological Society</i> , 2016 , 97, S92-S96	6.1	16
48	Observed 21st century temperatures further constrain likely rates of future warming. <i>Atmospheric Science Letters</i> , 2012 , 13, 151-156	2.4	15
47	Variability of high latitude amplification of anthropogenic warming. Geophysical Research Letters,	4.0	14
	2009 , 36,	4.9	
46	Atmospheric science. From past to future warming. <i>Science</i> , 2014 , 343, 844-5	33.3	13
46 45			13

(2011-2017)

43	Is the choice of statistical paradigm critical in extreme event attribution studies?. <i>Climatic Change</i> , 2017 , 144, 143-150	4.5	11
42	Role of Anthropogenic Forcing in 2014 Hot Spring in Northern China. <i>Bulletin of the American Meteorological Society</i> , 2015 , 96, S111-S114	6.1	11
41	Sensitivity of the attribution of near surface temperature warming to the choice of observational dataset. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	11
40	A quality-controlled global runoff data set (Reply). <i>Nature</i> , 2006 , 444, E14-E15	50.4	11
39	Optimal Estimation of Stochastic Energy Balance Model Parameters. <i>Journal of Climate</i> , 2020 , 33, 7909-	7,92,6	11
38	U.K. Climate Projections: Summer Daytime and Nighttime Urban Heat Island Changes in England Major Cities. <i>Journal of Climate</i> , 2020 , 33, 9015-9030	4.4	11
37	Test of a decadal climate forecast. <i>Nature Geoscience</i> , 2013 , 6, 243-244	18.3	10
36	Observed climate change constrains the likelihood of extreme future global warming. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2008 , 60, 76-81	3.3	10
35	Highest rates of regional climate warming over the last decades and assessment of the role of natural and anthropogenic factors. <i>Doklady Earth Sciences</i> , 2006 , 406, 158-162	0.6	10
34	The influence of anthropogenic climate change on wet and dry summers in Europe. <i>Science Bulletin</i> , 2021 , 66, 813-823	10.6	10
33	Anthropogenic climate change and heat effects on health. <i>International Journal of Climatology</i> , 2019 , 39, 4751-4768	3.5	7
32	Was the Cold European Winter of 2009/10 Modified by Anthropogenic Climate Change? An Attribution Study. <i>Journal of Climate</i> , 2018 , 31, 3387-3410	4.4	7
31	Changing return periods of weather-related impacts: the attribution challenge. <i>Climatic Change</i> , 2011 , 109, 263-268	4.5	7
30	Reconciling Two Approaches to the Detection of Anthropogenic Influence on Climate. <i>Journal of Climate</i> , 2002 , 15, 326-329	4.4	7
29	Allowing for solar forcing in the detection of human influence on tropospheric temperatures. <i>Geophysical Research Letters</i> , 2001 , 28, 1555-1558	4.9	7
28	Linking Extreme Weather to Climate Variability and Change: International Group on Attribution of Climate-Related Events (ACE); Boulder, Colorado, 26 January 2009. <i>Eos</i> , 2009 , 90, 184-184	1.5	6
27	Deep North Atlantic freshening simulated in a coupled climate model. <i>Progress in Oceanography</i> , 2007 , 73, 370-383	3.8	6
26	Comment on Climate Science and the Uncertainty Monster D. A. Curry and P. J. Webster. <i>Bulletin of the American Meteorological Society</i> , 2011 , 92, 1683-1685	6.1	5

25	Anthropogenic and natural causes of twentieth century temperature change. <i>Space Science Reviews</i> , 2000 , 94, 337-344	7.5	5
24	Correlations between patterns of 19th and 20th century surface temperature change and HadCM2 Climate Model ensembles. <i>Geophysical Research Letters</i> , 2001 , 28, 1007-1010	4.9	5
23	Stratospheric Flow during Two Recent Winters Simulated by a Mechanistic Model. <i>Monthly Weather Review</i> , 1998 , 126, 1655-1680	2.4	5
22	Contribution of Global Warming and Atmospheric Circulation to the Hottest Spring in Eastern China in 2018. <i>Advances in Atmospheric Sciences</i> , 2020 , 37, 1285-1294	2.9	5
21	Human Contribution to the Record Sunshine of Winter 2014/15 in the United Kingdom. <i>Bulletin of the American Meteorological Society</i> , 2016 , 97, S47-S50	6.1	5
20	Detectable Anthropogenic Influence on Changes in Summer Precipitation in China. <i>Journal of Climate</i> , 2020 , 33, 5357-5369	4.4	4
19	The impact of stratospheric resolution on the detectability of climate change signals in the free atmosphere. <i>Geophysical Research Letters</i> , 2013 , 40, 937-942	4.9	3
18	The Hot and Dry April of 2016 in Thailand. <i>Bulletin of the American Meteorological Society</i> , 2018 , 99, S1	2865:13	2 3
17	Increase in the frequency of extreme daily precipitation in the United Kingdom in autumn. <i>Weather and Climate Extremes</i> , 2021 , 33, 100340	6	3
16	Introduction to Explaining Extreme Events of 2017 from a Climate Perspective. <i>Bulletin of the American Meteorological Society</i> , 2019 , 100, S1-S4	6.1	2
15	The effect of human land use change in the Hadley Centre attribution system. <i>Atmospheric Science Letters</i> , 2020 , 21, e972	2.4	2
14	Attributing and Projecting Heatwaves Is Hard: We Can Do Better. <i>Earthps Future</i> , 2022 , 10,	7.9	2
13	Comparison of landBurface humidity between observations and CMIP5 models 2017,		1
12	Reply to 'Drivers of the 2013/14 winter floods in the UK'. <i>Nature Climate Change</i> , 2015 , 5, 491-492	21.4	1
11	The international surface temperature initiative 2013,		1
10	Proposals for surface-temperature databank now open for scrutiny. <i>Nature</i> , 2010 , 466, 1040	50.4	1
9	Summary and Broader Context. Bulletin of the American Meteorological Society, 2016, 97, S141-S145	6.1	1
8	A new energy-balance approach to linear filtering for estimating effective radiative forcing from temperature time series. <i>Advances in Statistical Climatology, Meteorology and Oceanography</i> , 2020 , 6, 91-102	1.5	1

LIST OF PUBLICATIONS

7	Record-breaking daily rainfall in the United Kingdom and the role of anthropogenic forcings. <i>Atmospheric Science Letters</i> , 2021 , 22, e1033	2.4	1
6	Recent decreases in domestic energy consumption in the United Kingdom attributed to human influence on the climate. <i>Atmospheric Science Letters</i> ,e1062	2.4	1
5	Human influence on seasonal precipitation in Europe. Journal of Climate, 2022, 1-50	4.4	1
4	Human influence increases the likelihood of extremely early cherry tree flowering in Kyoto. <i>Environmental Research Letters</i> , 2022 , 17, 054051	6.2	1
3	Summary and Broader Context. Bulletin of the American Meteorological Society, 2015, 96, S168-S172	6.1	
2	Observations of Climate Variability Discussion Session 3a. <i>Space Science Reviews</i> , 2000 , 94, 345-348	7.5	
1	Could detection and attribution of climate change trends be spurious regression?. <i>Climate Dynamics</i> , 2022 , 1-15	4.2	