Rui Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9504918/rui-zhang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25	258	11	15
papers	citations	h-index	g-index
25 ext. papers	302 ext. citations	7.1 avg, IF	3.11 L-index

#	Paper	IF	Citations
25	Using and Machine Learning Approaches to Determine Species-Specific Dioxin-like Potency and Congener-Specific Relative Sensitivity among Birds for Brominated Dioxin Analogues. <i>Environmental Science & Environmental Science</i>	10.3	2
24	Bioaccumulation, Metabolism, and Biomarker Responses in Hyriopsis cumingii Exposed to 4-Mono-Chlorinated Dibenzothiophene. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 1873-1882	3.8	2
23	Polychlorinated Diphenyl Sulfides: An Emerging Class of Persistent, Bioaccumulative, and Toxic Substances in the Environment. <i>Environmental Toxicology and Chemistry</i> , 2021 , 40, 2657-2666	3.8	3
22	Computational evaluation of interactions between organophosphate esters and nuclear hormone receptors. <i>Environmental Research</i> , 2020 , 182, 108982	7.9	8
21	Quantum chemical investigations of the decomposition of the peroxydisulfate ion to sulfate radicals. <i>Chemical Engineering Journal</i> , 2019 , 361, 960-967	14.7	5
20	Polychlorinated Diphenylsulfides Activate Aryl Hydrocarbon Receptor 2 in Zebrafish Embryos: Potential Mechanism of Developmental Toxicity. <i>Environmental Science & Developmental</i> , 2018, 52, 4402-4412	10.3	13
19	The impact of dissolved oxygen on sulfate radical-induced oxidation of organic micro-pollutants: A theoretical study. <i>Water Research</i> , 2018 , 135, 144-154	12.5	23
18	Characteristics and health risk assessment of volatile organic compounds emitted from interior materials in vehicles: a case study from Nanjing, China. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 14789-14798	5.1	14
17	Tissue-specific bioaccumulation, depuration and metabolism of 4,4\(\mathbb{M}\) ichlorodiphenyl sulfide in the freshwater mussel Anodonta woodiana. Science of the Total Environment, 2018, 642, 854-863	10.2	14
16	Down-Regulation of hspb9 and hspb11 Contributes to Wavy Notochord in Zebrafish Embryos Following Exposure to Polychlorinated Diphenylsulfides. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	5
15	Genotoxicity and cytotoxicity reduction of the polluted urban river after ecological restoration: a field-scale study of Jialu River in northern China. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 6715-6723	5.1	8
14	Comparison of different advanced treatment processes in removing endocrine disruption effects from municipal wastewater secondary effluent. <i>Chemosphere</i> , 2017 , 168, 1-9	8.4	24
13	A high-throughput, computational system to predict if environmental contaminants can bind to human nuclear receptors. <i>Science of the Total Environment</i> , 2017 , 576, 609-616	10.2	12
12	Activation of AhR-mediated toxicity pathway by emerging pollutants polychlorinated diphenyl sulfides. <i>Chemosphere</i> , 2016 , 144, 1754-62	8.4	15
11	Relative sensitivities among avian species to individual and mixtures of aryl hydrocarbon receptor-active compounds. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 1239-46	3.8	1
10	In vitro dioxin-like potencies of HO- and MeO-PBDEs and inter-species sensitivity variation in birds. <i>Ecotoxicology and Environmental Safety</i> , 2016 , 126, 202-210	7	12
9	Endocrine disrupting compounds reduction and water quality improvement in reclaimed municipal wastewater: A field-scale study along Jialu River in North China. <i>Chemosphere</i> , 2016 , 157, 232-40	8.4	18

LIST OF PUBLICATIONS

8	Activation of avian aryl hydrocarbon receptor and inter-species sensitivity variations by polychlorinated diphenylsulfides. <i>Environmental Science & Environmental Science & E</i>	10.3	19
7	Signal transduction disturbance related to hepatocarcinogenesis in mouse by prolonged exposure to Nanjing drinking water. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 6468-81	5.1	3
6	Relative potencies of aroclor mixtures derived from avian in vitro bioassays: comparisons with calculated toxic equivalents. <i>Environmental Science & Environmental Science & </i>	10.3	4
5	NMR-based metabolic profiling for serum of mouse exposed to source water. <i>Ecotoxicology</i> , 2011 , 20, 1065-70	2.9	2
4	Genome-wide screening of indicator genes for assessing the potential carcinogenic risk of Nanjing city drinking water. <i>Ecotoxicology</i> , 2011 , 20, 1033-40	2.9	5
3	Risk assessment of polycyclic aromatic hydrocarbons in aquatic ecosystems. <i>Ecotoxicology</i> , 2011 , 20, 1124-30	2.9	40
2	Preliminary evaluation of gene expression profiles in liver of mice exposed to Taihu Lake drinking water for 90 days. <i>Ecotoxicology</i> , 2011 , 20, 1071-7	2.9	4
1	Integration of gene chip and topological network techniques to screen a candidate biomarker gene (CBG) for predication of the source water carcinogenesis risks on mouse Mus musculus. <i>Ecotoxicology</i> , 2011 , 20, 1026-32	2.9	2