Emilio Bucio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9504681/publications.pdf

Version: 2024-02-01

147801 265206 2,987 42 182 31 h-index citations g-index papers 193 193 193 2485 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Modification of cotton gauzes with poly(acrylic acid) and poly(methacrylic acid) using gamma radiation for drug loading studies. Radiation Physics and Chemistry, 2022, 190, 109787.	2.8	11
2	Cross-Linked Polymer-Based Adsorbents and Membranes for Dye Removal. Sustainable Textiles, 2022, , 263-289.	0.7	1
3	Lignin-Based Membrane for Dye Removal. Sustainable Textiles, 2022, , 181-213.	0.7	1
4	Interaction of Dye Molecules with Fungi: Operational Parameters and Mechanisms. Sustainable Textiles, 2022, , 165-191.	0.7	0
5	Zinc oxide enhancing hydrophilicity to [polytetrafluoroethylene-graft-poly(methyl) Tj ETQq1 1 0.784314 rgBT /O 2022, 190, 109813.	verlock 10 2.8) Tf 50 587 Td 3
6	Modification of indwelling PVC catheters by ionizing radiation with temperature- and pH-responsive polymers for antibiotic delivery. Radiation Physics and Chemistry, 2022, 193, 110005.	2.8	4
7	Drug-Medical Device Combination Product Design and Quality Control. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 37-53.	0.3	O
8	Polymeric Composite of Magnetite Iron Oxide Nanoparticles and Their Application in Biomedicine: A Review. Polymers, 2022, 14, 752.	4.5	69
9	Antifouling PVC Catheters by Gamma Radiation-Induced Zwitterionic Polymer Grafting. Polymers, 2022, 14, 1185.	4.5	3
10	Teflon graft poly N–N-dimethylacrylamide as a ciprofloxacin release system. Radiation Physics and Chemistry, 2022, 196, 110106.	2.8	2
11	Polypropylene Graft Poly(methyl methacrylate) Graft Poly(N-vinylimidazole) as a Smart Material for pH-Controlled Drug Delivery. International Journal of Molecular Sciences, 2022, 23, 304.	4.1	8
12	Polymer-Magnetic Semiconductor Nanocomposites for Industrial Electronic Applications. Polymers, 2022, 14, 2467.	4.5	15
13	Antimicrobial Activity of Composites-Based on Biopolymers. Macromol, 2022, 2, 258-283.	4.4	20
14	Antifungal polymers for medical applications. Medical Devices & Sensors, 2021, 4, e10134.	2.7	10
15	Synthesis and characterization of hydrophilically modified Tecoflex \hat{A}^{\otimes} polyurethane catheters for drug delivery. Materials Today Communications, 2021, 26, 101894.	1.9	22
16	Improving thermoâ€responsive hydrogel films by gamma rays and loading of Cu and Ag nanoparticles. Journal of Applied Polymer Science, 2021, 138, 49841.	2.6	2
17	Microbial Degradation of Disinfectants. Environmental and Microbial Biotechnology, 2021, , 91-130.	0.7	1
18	Microbial Degradation of Proteins. Environmental and Microbial Biotechnology, 2021, , 351-371.	0.7	2

#	Article	IF	Citations
19	Microbial Degradation of Lipids. Environmental and Microbial Biotechnology, 2021, , 251-272.	0.7	2
20	Green synthesized zinc oxide nanomaterials and its therapeutic applications., 2021,, 237-261.		2
21	Poly(N-vinylcaprolactam) and Salicylic Acid Polymeric Prodrug Grafted onto Medical Silicone to Obtain a Novel Thermo- and pH-Responsive Drug Delivery System for Potential Medical Devices. Materials, 2021, 14, 1065.	2.9	14
22	Functionalization of cotton gauzes with poly(N-vinylimidazole) and quaternized poly(N-vinylimidazole) with gamma radiation to produce medical devices with pH-buffering and antimicrobial properties. Cellulose, 2021, 28, 3279-3294.	4.9	12
23	Simultaneous Grafting Polymerization of Acrylic Acid and Silver Aggregates Formation by Direct Reduction Using \hat{I}^3 Radiation onto Silicone Surface and Their Antimicrobial Activity and Biocompatibility. Molecules, 2021, 26, 2859.	3.8	8
24	Synthesis and Antimicrobial Properties of Highly Cross-Linked pH-Sensitive Hydrogels through Gamma Radiation. Polymers, 2021, 13, 2223.	4.5	20
25	Fast photocatalytic polypropylene degradation by nanostructured bismuth catalysts. Polymer Degradation and Stability, 2021, 190, 109648.	5. 8	13
26	Modification of medical grade silicone with stimuli-responsive acrylic/methacrylic polymers for ciprofloxacin delivery, their antimicrobial activity and biocompatibility. MRS Communications, 2021, 11, 635.	1.8	2
27	Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers, 2021, 13, 2998.	4.5	40
28	Antimicrobial polyurethane catheters synthesized by grafting-radiation method doped with silver nanoparticles. Reactive and Functional Polymers, 2021, 167, 105006.	4.1	5
29	Basics and green solvent parameter for environmental remediation. , 2021, , 219-237.		2
30	Sonochemical synthesis of inorganic nanomaterials., 2021,, 263-279.		1
31	Antimicrobial Polymers. Environmental and Microbial Biotechnology, 2021, , 1-42.	0.7	8
32	Cellulose-Based Antimicrobial Materials. Environmental and Microbial Biotechnology, 2021, , 61-85.	0.7	4
33	Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels, 2021, 7, 182.	4.5	101
34	Highly Crosslinked Agar/Acrylic Acid Hydrogels with Antimicrobial Properties. Gels, 2021, 7, 183.	4.5	12
35	Antimicrobial Materials for Local Drug Delivery. Environmental and Microbial Biotechnology, 2021, , 285-319.	0.7	0
36	Antimicrobial Membranes for Water Treatment. Environmental and Microbial Biotechnology, 2021, , 321-358.	0.7	0

#	Article	IF	Citations
37	Silver Composites as Antimicrobial Materials. Environmental and Microbial Biotechnology, 2021, , 127-147.	0.7	1
38	Natural Antimicrobial Materials. Environmental and Microbial Biotechnology, 2021, , 149-169.	0.7	0
39	Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: A short review. Radiation Physics and Chemistry, 2020, 169, 107962.	2.8	104
40	Zinc heterocyclic vinyl complexes and their gamma-irradiated derivatives: From the metal to antimicrobial materials. Reactive and Functional Polymers, 2020, 146, 104410.	4.1	3
41	Gamma rays: An alternative energy source for the preparation of manganese carbonyls-based new materials. Applied Radiation and Isotopes, 2020, 156, 108983.	1.5	2
42	An Updated Review of Macro, Micro, and Nanostructured Hydrogels for Biomedical and Pharmaceutical Applications. Pharmaceutics, 2020, 12, 970.	4.5	54
43	Controlled surface modification of silicone rubber by gamma-irradiation followed by RAFT grafting polymerization. European Polymer Journal, 2020, 134, 109817.	5.4	12
44	Modification of relevant polymeric materials for medical applications and devices. Medical Devices & Sensors, 2020, 3, e10073.	2.7	4
45	Radiation Grafting of a Polymeric Prodrug onto Silicone Rubber for Potential Medical/Surgical Procedures. Polymers, 2020, 12, 1297.	4.5	10
46	Aqueous polymerizations. , 2020, , 275-318.		13
47	Modification of PDMS with acrylic acid and acrylic acid/ethylene glycol dimethacrylate by simultaneous polymerization assisted by gamma radiation. Radiation Physics and Chemistry, 2020, 171, 108754.	2.8	11
48	Synthesis of polyamide-6@cellulose microfilms grafted with N-vinylcaprolactam using gamma-rays and loading of antimicrobial drugs. Cellulose, 2020, 27, 2785-2801.	4.9	14
49	N-Vinylcaprolactam grafting onto cotton gauze by gamma radiation for loading and controlled release of antibacterial silver nanoparticles. MRS Advances, 2020, 5, 3227-3237.	0.9	1
50	Antimicrobial Materials and Devices for Biomedical Applications. Frontiers in Clinical Drug Research - Anti Infectives, 2020, , 78-126.	0.7	0
51	Recent advances on carbon-carbon bond forming reactions in water. , 2020, , 357-386.		1
52	Adsorption and release of caffeine from smart PVDF polyampholyte membrane. Iranian Polymer Journal (English Edition), 2019, 28, 639-647.	2.4	8
53	Effect of gamma radiation on pyromellitic acid (PMA) and UO22+â^'PMA solutions. Radiation Physics and Chemistry, 2019, 165, 108378.	2.8	1
54	Surface Modification of Polyester-Fabric with Hydrogels and Silver Nanoparticles: Photochemical Versus Gamma Irradiation Methods. Materials, 2019, 12, 3284.	2.9	13

#	Article	IF	Citations
55	Development of ionic-imprinted polyesters of diallyl dicarboxylic acids (DAPY) for uranyl ion extraction (UO22+). MRS Communications, 2019, 9, 327-333.	1.8	O
56	Poly(acrylic acid)-grafted hydrophobic weak acid gels as mucoadhesives for controlled drug release. Radiation Physics and Chemistry, 2019, 164, 108372.	2.8	6
57	Comonomer effect: Switching the lower critical solution temperature to upper critical solution temperature in thermoâ€pH sensitive binary graft copolymers. Journal of Applied Polymer Science, 2019, 136, 48170.	2.6	5
58	Radiation-grafting of N-vinylcaprolactam and 2-hydroxyethyl methacrylate onto polypropylene films to obtain a thermo-responsive drug delivery system. Radiation Physics and Chemistry, 2019, 157, 6-14.	2.8	13
59	Radiation grafting of poly(methyl methacrylate) and poly(vinylimidazole) onto polytetrafluoroethylene films and silver immobilization for antimicrobial performance. Applied Surface Science, 2019, 473, 951-959.	6.1	23
60	Immobilization of antimicrobial and anti-quorum sensing enzymes onto GMA-grafted poly(vinyl) Tj ETQq0 0 0 rg	BT <u> O</u> verlo	ck 10 Tf 50 54
61	Stimuli-Responsive Nanomaterials for Drug Delivery. , 2019, , 375-424.		4
62	Surface functionalization of polypropylene and polyethylene films with allylamine by \hat{l}^3 radiation. MRS Communications, 2019, 9, 264-269.	1.8	7
63	Polypropylene films modified by grafting-from of ethylene glycol dimethacrylate/glycidyl methacrylate using \hat{I}^3 -rays and antimicrobial biofunctionalization by Schiff bases. MRS Communications, 2018, 8, 168-177.	1.8	6
64	Development and characterization of thermal responsivehydrogel films for biomedical sensor application. Materials Research Express, 2018, 5, 045703.	1.6	9
65	Antimicrobial silver-loaded polypropylene sutures modified by radiation-grafting. European Polymer Journal, 2018, 100, 290-297.	5.4	36
66	Graft copolymerization by ionization radiation, characterization, and enzymatic activity of temperature-responsive SR- g -PNVCL loaded with lysozyme. Reactive and Functional Polymers, 2018, 126, 74-82.	4.1	30
67	Poly(vinyl chloride) catheters modified with pH-responsive poly(methacrylic acid) with affinity for antimicrobial agents. Radiation Physics and Chemistry, 2018, 142, 107-114.	2.8	18
68	Polymeric pro-drug sutures for potential local release of salicylic acid. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 792-799.	3.4	8
69	Synthesis of a thermo- and pH-sensitive comb-type graft copolymer by ionizing radiation. MRS Communications, 2018, 8, 1335-1342.	1.8	5
70	Grafting of glycerol methacrylate onto silicone rubber using \hat{I}^3 -rays: derivatization to 2-oxoethyl methacrylate and immobilization of lysozyme. MRS Communications, 2018, 8, 199-206.	1.8	5
71	Radiation Grafting of Biopolymers and Synthetic Polymers. , 2018, , 205-250.		9
72	Current Methods Applied to Biomaterials – Characterization Approaches, Safety Assessment and Biological International Standards. Current Topics in Medicinal Chemistry, 2018, 18, 256-274.	2.1	5

#	Article	IF	Citations
73	One-step grafting of temperature-and pH-sensitive (N-vinylcaprolactam-co-4-vinylpyridine) onto silicone rubber for drug delivery. Designed Monomers and Polymers, 2017, 20, 33-41.	1.6	17
74	Temperature-responsive copolymeric hydrogel systems synthetized by ionizing radiation. Radiation Physics and Chemistry, 2017, 135, 113-120.	2.8	6
75	Silicone rubber films functionalized with poly(acrylic acid) nanobrushes for immobilization of gold nanoparticles and photothermal therapy. Journal of Drug Delivery Science and Technology, 2017, 42, 245-254.	3.0	40
76	Covalent immobilization of lysozyme in silicone rubber modified by easy chemical grafting. MRS Communications, 2017, 7, 904-912.	1.8	10
77	Improved covalent immobilization of lysozyme on silicone rubber-films grafted with poly(ethylene) Tj ETQq1 1 ().78 <u>43</u> 14 r	gBT_{Overloci
78	Achieving antimicrobial activity through poly(N-methylvinylimidazolium) iodide brushes on binary-grafted polypropylene suture threads. MRS Communications, 2017, 7, 938-946.	1.8	15
79	Radiation-grafting of vinyl monomers separately onto polypropylene monofilament sutures. Radiation Physics and Chemistry, 2017, 132, 1-7.	2.8	11
80	Conductive Polymer Composites Synthesized from Diacetylene-Functionalized Linseed Oil and MWCNT: Gamma Irradiation and Organic Vapor Sensing. Journal of Renewable Materials, 2017, 5, 132-144.	2.2	1
81	Correlation of highâ€hydrophobic solâ€gel coatings with electrochemical and morphological measurements deposited on AA2024. Surface and Interface Analysis, 2016, 48, 670-675.	1.8	5
82	Grafting of thermo-sensitive N-vinylcaprolactam onto silicone rubber through the direct radiation method. Radiation Physics and Chemistry, 2016, 124, 155-158.	2.8	11
83	Stimuli-responsive polymers for antimicrobial therapy: drug targeting, contact-killing surfaces and competitive release. Expert Opinion on Drug Delivery, 2016, 13, 1109-1119.	5. O	38
84	Lysozyme immobilization onto PVC catheters grafted with NVCL and HEMA for reduction of bacterial adhesion. Radiation Physics and Chemistry, 2016, 126, 1-8.	2.8	11
85	Radiation Grafting for the Functionalization and Development of Smart Polymeric Materials. Topics in Current Chemistry, 2016, 374, 63.	5.8	26
86	Polymeric prodrugâ¿¿functionalized polypropylene films for sustained release of salicylic acid. International Journal of Pharmaceutics, 2016, 511, 579-585.	5,2	12
87	Radiation-grafting of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) onto silicone rubber. Radiation Physics and Chemistry, 2016, 127, 21-26.	2.8	23
88	Synthesis and characterization of stimuli-responsive polypropylene containing N -vinylcaprolactam and N -vinylimidazole obtained by ionizing radiation. Materials Science and Engineering C, 2016, 67, 353-361.	7.3	16
89	Modification of medical grade PVC with N-vinylimidazole to obtain bactericidal surface. Radiation Physics and Chemistry, 2016, 119, 37-43.	2.8	41
90	Synthesis of Temperature- and pH-Sensitive Graft Copolymer Containing 2-(Diethylamino)ethyl Methacrylate and N-Vinylcaprolactam onto Silicone Rubber. Open Journal of Polymer Chemistry, 2016, 06, 15-26.	3.3	1

#	Article	IF	CITATIONS
91	Solid State NMR Analysis of Two Grafted Biopolymers. Materials Research Society Symposia Proceedings, 2015, 1767, 113-118.	0.1	1
92	Synthesis of a pH- and Thermo- Responsive Binary Copolymer Poly(N-vinylimidazole-co-N-vinylcaprolactam) Grafted onto Silicone Films. Coatings, 2015, 5, 758-770.	2.6	4
93	Mucoadhesive thermo-responsive chitosan- g -poly(N -isopropylacrylamide) polymeric micelles via a one-pot gamma-radiation-assisted pathway. Colloids and Surfaces B: Biointerfaces, 2015, 136, 900-907.	5.0	40
94	Grafting of <i>N</i> â€vinyl caprolactam and methacrylic acid onto silicone rubber films for drugâ€eluting products. Journal of Applied Polymer Science, 2015, 132, .	2.6	10
95	Radiation-grafting of N-vinylimidazole onto silicone rubber for antimicrobial properties. Radiation Physics and Chemistry, 2015, 110, 59-66.	2.8	27
96	Radiation-grafting of acrylamide onto silicone rubber films for diclofenac delivery. Radiation Physics and Chemistry, 2015, 107, 164-170.	2.8	18
97	Smart Polymers and Coatings Obtained by Ionizing Radiation: Synthesis and Biomedical Applications. Open Journal of Polymer Chemistry, 2015, 05, 17-33.	3.3	20
98	Binary Graft Modification of Polypropylene for Antiâ€Inflammatory Drug–Device Combo Products. Journal of Pharmaceutical Sciences, 2014, 103, 1269-1277.	3.3	18
99	Preparation of stimuliâ€responsive nanogels of poly [2â€(dimethylamino) ethyl methacrylate] by heterophase and microemulsion polymerization using gamma radiation. Polymer Engineering and Science, 2014, 54, 1625-1631.	3.1	17
100	Gammaâ€irradiated silica sol–gel coatings as a function of dose on AA2024â€₹3. Surface and Interface Analysis, 2014, 46, 1051-1056.	1.8	3
101	Radiation-Grafting of Thermo- and pH-Sensitive Poly(N-Vinylcaprolactam-co-Acrylic Acid) onto Silicone Rubber and Polypropylene Films. Materials Research Society Symposia Proceedings, 2014, 1613, 53-59.	0.1	0
102	Temperature-responsiveness and biocompatibility of DEGMA/OEGMA radiation-grafted onto PP and LDPE films. Radiation Physics and Chemistry, 2014, 99, 53-61.	2.8	10
103	Acrylic polymer-grafted polypropylene sutures for covalent immobilization or reversible adsorption of vancomycin. International Journal of Pharmaceutics, 2014, 461, 286-295.	5.2	44
104	Silicone Rubber Modified with Methacrylic Acid to Host Antiseptic Drugs. Macromolecular Materials and Engineering, 2014, 299, 1240-1250.	3.6	17
105	Temperature―and pHâ€sensitive IPNs grafted onto polyurethane by gamma radiation for antimicrobial drugâ€eluting insertable devices. Journal of Applied Polymer Science, 2014, 131, .	2.6	12
106	Wound debridement and antibiofilm properties of gamma-ray DMAEMA-grafted onto cotton gauzes. Cellulose, 2014, 21, 3767-3779.	4.9	15
107	Synthesis and characterization of novel <scp>pH</scp> â€sensitive chitosanâ€poly(acrylamideâ€ <i>co</i> à6itaconic acid) hydrogels. Polymer International, 2014, 63, 1715-1723.	3.1	19
108	Radiation-grafting of thermo- and pH-responsive poly(N-vinylcaprolactam-co-acrylic acid) onto silicone rubber and polypropylene films for biomedical purposes. Radiation Physics and Chemistry, 2014, 97, 298-303.	2.8	40

#	Article	IF	CITATIONS
109	Comparative study of grafting a polyampholyte in a fluoropolymer membrane by gamma radiation in one or two-steps. Radiation Physics and Chemistry, 2013, 92, 61-65.	2.8	17
110	Radiation grafting of N,N′-dimethylacrylamide and 2-hydroxyethylmethacrylate onto polypropylene films by one step method. Radiation Physics and Chemistry, 2013, 84, 166-169.	2.8	11
111	Characterization of Hybrid Sol-Gel Coatings Doped with Hydrotalcite-likeCompounds on Steel and Stainless Steel Alloys. ECS Transactions, 2013, 47, 195-206.	0.5	7
112	Radiation-Grafting of Cotton-g-DMAEMA for Biomedical Applications. Materials Research Society Symposia Proceedings, 2012, 1483, 30.	0.1	1
113	Radiation grafting of glycidyl methacrylate onto cotton gauzes for functionalization with cyclodextrins and elution of antimicrobial agents. Cellulose, 2012, 19, 2165-2177.	4.9	31
114	Crosslinking of poly(vinyl acetate) nanolatices by gamma and UV radiation. Journal of Applied Polymer Science, 2012, 126, 1328-1336.	2.6	1
115	Temperature- and pH-responsive behavior of a novel copolymer of (PP-g-DMAEMA)-g-AAc. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292, 1-6.	1.5	9
116	Radiation-grafting of 2-hydroxyethylmethacrylate and oligo (ethylene glycol) methyl ether methacrylate onto polypropylene films by one step method. Radiation Physics and Chemistry, 2012, 81, 27-32.	2.8	10
117	Synthesis and characterization of thermosensitive interpenetrating polymer networks based on N-isopropylacrylamide/N-acryloxysuccinimide, crosslinked with polylysine, grafted onto polypropylene. Radiation Physics and Chemistry, 2012, 81, 295-300.	2.8	9
118	Temperature- and pH-sensitive interpenetrating polymer networks grafted on PP: Cross-linking irradiation dose as a critical variable for the performance as vancomycin-eluting systems. Radiation Physics and Chemistry, 2012, 81, 531-540.	2.8	33
119	Novel sol–gel methodology to produce LaCoO3 by acrylamide polymerization assisted by γ-irradiation. Radiation Physics and Chemistry, 2012, 81, 512-518.	2.8	13
120	PEBAX TM -Silanized Al ₂ O ₃ Composite. Synthesis and Characterization. Open Journal of Polymer Chemistry, 2012, 02, 63-69.	3.3	9
121	Biofilm inhibition and drug-eluting properties of novel DMAEMA-modified polyethylene and silicone rubber surfaces. Biofouling, 2011, 27, 123-135.	2.2	42
122	Stimuli–responsive networks grafted onto polypropylene for the sustained delivery of NSAIDs. Acta Biomaterialia, 2011, 7, 996-1008.	8.3	37
123	Cyclodextrin-functionalized biomaterials loaded with miconazole prevent Candida albicans biofilm formation in vitro. Acta Biomaterialia, 2010, 6, 1398-1404.	8.3	56
124	Radiation-induced grafting of stimuli-responsive binary monomers: PDMAEMA/PEGMEMA onto PP films. Journal of Radioanalytical and Nuclear Chemistry, 2010, 283, 559-563.	1.5	8
125	Effect of gamma irradiation on molecular weight of fluorinated aromatic polyethers. Journal of Radioanalytical and Nuclear Chemistry, 2010, 284, 109-115.	1.5	1
126	\hat{I}^3 -Ray-induced grafting of DMAEMA and AAc onto PP by two step method. Journal of Radioanalytical and Nuclear Chemistry, 2010, 284, 131-135.	1.5	9

#	Article	IF	Citations
127	PP films grafted with N-isopropylacrylamide and N-(3-aminopropyl) methacrylamide by \hat{l}^3 radiation: synthesis and characterization. Radiation Physics and Chemistry, 2010, 79, 615-621.	2.8	16
128	Polypropylene grafted with NIPAAm and APMA for creating hemocompatible surfaces that load/elute nalidixic acid. Reactive and Functional Polymers, 2010, 70, 836-842.	4.1	23
129	Radiation grafting of NIPAAm and acryloxysuccinimide onto PP films and sequent crosslinking with polylysine. European Polymer Journal, 2010, 46, 1074-1083.	5.4	8
130	Medical devices modified at the surface by \hat{I}^3 -ray grafting for drug loading and delivery. Expert Opinion on Drug Delivery, 2010, 7, 173-185.	5.0	82
131	Surface Morphology of Radiation-Grafted Binary Copolymers Measured in Buffer Solution under Swelling Condition. Japanese Journal of Applied Physics, 2010, 49, 01AF02.	1.5	1
132	Gas Transport Properties of Some Fluorine-Containing Polyethers. Industrial & Engineering Chemistry Research, 2010, 49, 11948-11953.	3.7	12
133	Surface Characterization of Binary Graft Copolymers (PP-g-DMAEMA)-g-NIPAAm and (PP-g-4VP)-g-NIPAAm by Using SEM and AFM. ACS Symposium Series, 2010, , 107-120.	0.5	1
134	Stimuli-Sensitive Behaviour of Binary Graft Co-polymers (PP-g-DMAEMA)-g-NIPAAm and (PP-g-4VP)-g-NIPAAm in Acidic and Basic Medium. Designed Monomers and Polymers, 2009, 12, 99-108.	1.6	14
135	Electron beam irradiation of fluoropolymers containing polyethers. Radiation Physics and Chemistry, 2009, 78, 119-123.	2.8	4
136	Surface modification by \hat{I}^3 -ray-induced grafting of PDMAEMA/PEGMEMA onto PE films. Radiation Physics and Chemistry, 2009, 78, 485-488.	2.8	16
137	Cyclodextrin-functionalized polyethylene and polypropylene as biocompatible materials for diclofenac delivery. International Journal of Pharmaceutics, 2009, 382, 183-191.	5.2	38
138	Radiation-induced grafting of sensitive polymers. Journal of Radioanalytical and Nuclear Chemistry, 2009, 280, 239-243.	1.5	32
139	Effect of gamma radiation on fluoropolymers. Journal of Polymer Science Part A, 2009, 47, 1617-1626.	2.3	2
140	Novel interpenetrating smart polymer networks grafted onto polypropylene by gamma radiation for loading and delivery of vancomycin. European Polymer Journal, 2009, 45, 1859-1867.	5.4	40
141	Modification of polyethylene films by radiation grafting of glycidyl methacrylate and immobilization of \hat{l}^2 -cyclodextrin. Radiation Physics and Chemistry, 2009, 78, 19-24.	2.8	33
142	Radiation-grafting of 4-vinylpyridine and N-isopropylacrylamide onto polypropylene to give novel pH and thermo-sensitive films. Radiation Physics and Chemistry, 2009, 78, 1-7.	2.8	40
143	Characterization of interpenetrating networks of acrylic acid (AAc) and N-isopropylacrylamide (NIPAAm) synthesized by ionizing radiation. Radiation Physics and Chemistry, 2009, 78, 549-552.	2.8	19
144	Novel pH- and Temperature-Sensitive Behavior of Binary Graft DMAEMA/PEGMEMA onto LDPE Membranes. Designed Monomers and Polymers, 2009, 12, 543-552.	1.6	10

#	Article	IF	Citations
145	Structural and morphology comparison between m-LaVO4 and LaVO3 compounds prepared by sol–gel acrylamide polymerization and solid state reaction. Journal of Alloys and Compounds, 2009, 479, 511-519.	5.5	26
146	Microstructural Comparison of La-V-O Compounds Prepared by Sol-Gel Acrylamide Polymerization and Solid State Reaction Microscopy and Microanalysis, 2009, 15, 1044-1045.	0.4	6
147	Thermo and pH Sensitive Copolymer Based on Acrylic Acid and N-Isopropylacrylamide Grafted onto Polypropylene. Polymer Bulletin, 2008, 60, 79-87.	3.3	27
148	New Interpenetrating Polymer Networks of N-isopropylacrylamide/ N-acryloxysuccinimide: Synthesis and Characterization. Polymer Bulletin, 2008, 60, 515-524.	3.3	34
149	Radiation synthesis of a thermo-pH responsive binary graft copolymer (PP-g-DMAEMA)-g-NIPAAm by a two step method. Polymer Bulletin, 2008, 61, 619-629.	3.3	21
150	Radiation grafting of N,N′-dimethylacrylamide and N-isopropylacrylamide onto polypropylene films by two-step method. Radiation Physics and Chemistry, 2008, 77, 936-940.	2.8	43
151	Polypropylene grafted with smart polymers (PNIPAAm/PAAc) for loading and controlled release of vancomycin. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 467-477.	4.3	72
152	Radiation grafting of poly(ethylene glycol) methacrylate onto poly(vinyl chloride) tubes. Designed Monomers and Polymers, 2007, 10, 459-467.	1.6	5
153	Temperature and pH-Sensitive Swelling Behavior of Binary DMAEMA/4VP Grafts on Poly(propylene) Films. Macromolecular Materials and Engineering, 2007, 292, 214-219.	3.6	76
154	Interpenetrating Thermo and pH Stimuliâ€Responsive Polymer Networks of PAAc/PNIPAAm Grafted onto PP. Macromolecular Materials and Engineering, 2007, 292, 1176-1188.	3.6	37
155	Radiation grafting of pH and thermosensitive N-isopropylacrylamide and acrylic acid onto PTFE films by two-steps process. Radiation Physics and Chemistry, 2007, 76, 1724-1727.	2.8	32
156	Radiation Grafting of N-Isopropylacrylamide onto Poly(vinyl chloride) tubes by Gamma Irradiation. Polymer Bulletin, 2007, 58, 401-409.	3.3	15
157	Radiation polymerization and crosslinking of (N-isopropylacrylamide) in solution and in solid state. Polymer Bulletin, 2007, 58, 565-573.	3.3	13
158	Electron beam irradiation effects on poly(ethylene terephthalate). Radiation Physics and Chemistry, 2007, 76, 1728-1731.	2.8	24
159	Radiation-induced grafting of N-isopropylacrylamide and acrylic acid onto polypropylene films by two step method. Nuclear Instruments & Methods in Physics Research B, 2007, 265, 183-186.	1.4	41
160	Radiation Grafting of N-Isopropylacrylamide Onto Polypropylene Films by Preirradiation Method. Molecular Crystals and Liquid Crystals, 2006, 447, 203/[521]-213/[531].	0.9	11
161	Synthesis and Characterization of New Polyesters Derived from Diphenols and Aromatic Diacids Chlorides. Polymer Bulletin, 2006, 56, 163-170.	3.3	12
162	New spirodilactam polymers. Polymer, 2006, 47, 6927-6930.	3.8	13

#	Article	IF	Citations
163	Synthesis and characterization of new polyethers containing aliphatic and aromatic spirodilactam. Designed Monomers and Polymers, 2006, 9, 55-62.	1.6	3
164	Surface characterization of binary grafting of AAc/NIPAAm onto poly(tetrafluoroethylene) (PTFE). Nuclear Instruments & Methods in Physics Research B, 2005, 234, 471-476.	1.4	39
165	Synthesis and characterization of azo acrylates grafted onto polyethylene terephthalate by gamma irradiation. Nuclear Instruments & Methods in Physics Research B, 2005, 236, 301-306.	1.4	12
166	Temperature Sensitive Behavior of Poly(N-isopropylacrylamide) Grafted Onto Electron Beam-Irradiated Poly(propylene). Macromolecular Materials and Engineering, 2005, 290, 745-752.	3.6	39
167	Photochemical Effect of Azocompounds Acrylates Grafted in Different Polymeric Matrices. Polymer Bulletin, 2005, 55, 191-199.	3.3	9
168	Synthesis and properties of aliphatic spirodilactam diphenol containing polyesters. Polymer, 2005, 46, 3971-3974.	3.8	17
169	Functionalization of polypropylene film by radiation grafting of acryloyl chloride and subsequent esterification with Disperse Red 1. Journal of Applied Polymer Science, 2004, 93, 172-178.	2.6	16
170	Synthesis and characterization of new fluorine-containing polyethers. Polymer, 2003, 44, 6431-6434.	3.8	20
171	Radiation grafting of N,N-dimethylaminoethylmethacrylate and 4-vinylpyridine onto polypropylene by the one- and two-step methods. Polymer Bulletin, 2002, 47, 571-577.	3.3	15
172	Radiation-induced grafting of functional acrylic monomers onto polyethylene and polypropylene films using acryloyl chloride. Polymer Bulletin, 2001, 46, 115-121.	3.3	33
173	Studies on salts of amine-containing polymers with benzoic acids. III. Poly(N,N-dimethylaminoethyl) Tj ETQq1 1 ().784314 r 2.6	gBJ /Overloc
174	Study on the interaction of diarylbutadiynes with free radicals: Interaction with propagating radicals of some vinyl monomers. Polymer Bulletin, 1999, 43, 357-364.	3.3	8
175	Radiation grafting of dimethylaminoethylmethacrylate onto poly(propylene). Radiation Physics and Chemistry, 1998, 52, 193-196.	2.8	12
176	Radiation-grafting of N,N-dimethylaminoethylmetacrylate onto polyethylene film by preirradiation method. Polymer Bulletin, 1997, 38, 587-594.	3.3	8
177	Radiation-grafting of 2-bromoethylacrylate onto polyethylene film by preirradiation method. Radiation Physics and Chemistry, 1996, 48, 805-810.	2.8	14
178	Free radical copolymerization of 4-phenylbut-1-en-3-yne with methylmethacrylate. Polymer Bulletin, 1996, 36, 287-293.	3.3	0
179	Gamma-ray induced crosslinking of polynorbornene and its copolymer containing a stabilizing group. Polymer Bulletin, 1996, 37, 539-544.	3.3	1
180	Corrosion Resistance of AA2024-T3 Coated with Graphene/Sol-Gel Films. Solid State Phenomena, 0, 227, 115-118.	0.3	3

#	Article	IF	CITATIONS
181	Radiaci \tilde{A}^3 n gamma para el dise $\tilde{A}\pm$ o de sistemas inteligentes en liberaci \tilde{A}^3 n controlada de f \tilde{A}_i rmacos e ingenier \tilde{A} a de tejidos. , 0, , 485-519.		2
182	Aplicaciones de radiaci \tilde{A}^3 n gamma y UV para el injerto molecular y el dise $\tilde{A}\pm$ o de matrices para aplicaciones terap \tilde{A} ©uticas. , 0, , 453-484.		0