Wensheng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9504537/publications.pdf

Version: 2024-02-01

27 papers	792 citations	687363 13 h-index	26 g-index
27	27	27	1220
27 all docs	27 docs citations	27 times ranked	1339 citing authors

#	Article	IF	CITATIONS
1	First Report of Leaf Spot Disease Caused by <i>Alternaria brassicae</i> on <i>Orychophragmus violaceus</i> in China. Plant Disease, 2022, 106, 320.	1.4	1
2	First Report of Didymella glomerata Causing Didymella Leaf Blight on Maize in China. Plant Disease, 2022, , .	1.4	4
3	The Rice Malectin Regulates Plant Cell Death and Disease Resistance by Participating in Glycoprotein Quality Control. International Journal of Molecular Sciences, 2022, 23, 5819.	4.1	3
4	Molecular Genetics of Anthracnose Resistance in Maize. Journal of Fungi (Basel, Switzerland), 2022, 8, 540.	3.5	4
5	A rice protein modulates endoplasmic reticulum homeostasis and coordinates with a transcription factor to initiate blast disease resistance. Cell Reports, 2022, 39, 110941.	6.4	11
6	A novel glycine-rich domain protein, GRDP1, functions as a critical feedback regulator for controlling cell death and disease resistance in rice. Journal of Experimental Botany, 2021, 72, 608-622.	4.8	13
7	OsNBL1, a Multi-Organelle Localized Protein, Plays Essential Roles in Rice Senescence, Disease Resistance, and Salt Tolerance. Rice, 2021, 14, 10.	4.0	4
8	OsNBL3, a mitochondrion″ocalized pentatricopeptide repeat protein, is involved in splicing <i>nad5</i> intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses. Plant Biotechnology Journal, 2021, 19, 2277-2290.	8.3	28
9	LtEPG1, a Secretory Endopolygalacturonase Protein, Regulates the Virulence of <i>Lasiodiplodia theobromae</i> in <i>Vitis vinifera</i> and Is Recognized as a Microbe-Associated Molecular Patterns. Phytopathology, 2020, 110, 1727-1736.	2.2	13
10	A common wild rice-derived BOC1 allele reduces callus browning in indica rice transformation. Nature Communications, 2020, 11, 443.	12.8	43
11	High Genetic Diversity and Species Complexity of Diaporthe Associated With Grapevine Dieback in China. Frontiers in Microbiology, 2019, 10, 1936.	3.5	66
12	Transcriptional response of grapevine to infection with the fungal pathogen Lasiodiplodia theobromae. Scientific Reports, 2019, 9, 5387.	3.3	15
13	Structural basis of dimerization and dual W-box DNA recognition by rice WRKY domain. Nucleic Acids Research, 2019, 47, 4308-4318.	14.5	56
14	Novel microsatellite markers reveal multiple origins of Botryosphaeria dothidea causing the Chinese grapevine trunk disease. Fungal Ecology, 2018, 33, 134-142.	1.6	9
15	Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Diversity, 2018, 90, 1-84.	12.3	101
16	A positiveâ€charged patch and stabilized hydrophobic core are essential for avirulence function of AvrPib in the rice blast fungus. Plant Journal, 2018, 96, 133-146.	5.7	49
17	Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus. Molecular Plant Pathology, 2017, 18, 222-237.	4.2	12
18	Structural basis of DNA recognition by PCG2 reveals a novel DNA binding mode for winged helix-turn-helix domains. Nucleic Acids Research, 2015, 43, 1231-1240.	14.5	18

#	Article	IF	CITATIONS
19	Substitution of tryptophan 89 with tyrosine switches the DNA binding mode of PC4. Scientific Reports, 2015, 5, 8789.	3.3	17
20	Genetic and physical mapping of the avirulence gene Avr-Pik m in Magnaporthe oryzae. Annals of Microbiology, 2013, 63, 997-1004.	2.6	0
21	Comparative Analysis of the Genomes of Two Field Isolates of the Rice Blast Fungus Magnaporthe oryzae. PLoS Genetics, 2012, 8, e1002869.	3.5	167
22	Structural features of the single-stranded DNA-binding protein MoSub1 from <i>Magnaporthe oryzae</i> . Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1071-1076.	2.5	10
23	A carnitine–acylcarnitine carrier protein, MoCrc1, is essential for pathogenicity in Magnaporthe oryzae. Current Genetics, 2012, 58, 139-148.	1.7	24
24	Characterization of a Novel RING Finger Gene <i>OsRFP1</i> , which is Induced by Ethylene, Salicylic Acid and Blast Fungus Infection in Rice. Journal of Phytopathology, 2008, 156, 396-402.	1.0	2
25	Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea. Plant Science, 2007, 172, 120-130.	3.6	88
26	Induced expression of oryzain \hat{l}_{\pm} gene encoding a cysteine proteinase under stress conditions. Journal of Plant Research, 2007, 120, 465-469.	2.4	10
27	Molecular cloning and differential expression of an γ-aminobutyrate transaminase gene, OsGABA-T, in rice (Oryza sativa) leaves infected with blast fungus. Journal of Plant Research, 2006, 119, 663-669.	2.4	24