Gregor Meyers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9504432/publications.pdf

Version: 2024-02-01

236925 345221 2,975 37 25 36 citations h-index g-index papers 37 37 37 2300 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Charged Residues in the Membrane Anchor of the Pestiviral Erns Protein Are Important for Processing and Secretion of Erns and Recovery of Infectious Viruses. Viruses, 2021, 13, 444.	3.3	4
2	The Erns Carboxyterminus: Much More Than a Membrane Anchor. Viruses, 2021, 13, 1203.	3.3	4
3	Interaction of Pestiviral E1 and E2 Sequences in Dimer Formation and Intracellular Retention. International Journal of Molecular Sciences, 2021, 22, 7285.	4.1	1
4	Characterization of Membrane Topology and Retention Signal of Pestiviral Glycoprotein E1. Journal of Virology, 2021, 95, e0052121.	3.4	8
5	The Molecular Basis for Erns Dimerization in Classical Swine Fever Virus. Viruses, 2021, 13, 2204.	3.3	O
6	A double deletion prevents replication of the pestivirus bovine viral diarrhea virus in the placenta of pregnant heifers. PLoS Pathogens, 2021, 17, e1010107.	4.7	7
7	Downstream Sequences Control the Processing of the Pestivirus E rns -E1 Precursor. Journal of Virology, 2020, 95, .	3.4	5
8	Structure–function relationship in the â€~termination upstream ribosomal binding site' of the calicivirus rabbit hemorrhagic disease virus. Nucleic Acids Research, 2019, 47, 1920-1934.	14.5	6
9	Restoration of glycoprotein Erns dimerization via pseudoreversion partially restores virulence of classical swine fever virus. Journal of General Virology, 2018, 99, 86-96.	2.9	9
10	Self-Replicating RNA. Methods in Molecular Biology, 2017, 1499, 15-35.	0.9	34
11	ICTV Virus Taxonomy Profile: Flaviviridae. Journal of General Virology, 2017, 98, 2-3.	2.9	537
12	Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. Journal of General Virology, 2017, 98, 2106-2112.	2.9	264
13	Type I and III IFNs Produced by Plasmacytoid Dendritic Cells in Response to a Member of theFlaviviridaeSuppress Cellular Immune Responses. Journal of Immunology, 2016, 196, 4214-4226.	0.8	25
14	The Molecular Biology of Pestiviruses. Advances in Virus Research, 2015, 93, 47-160.	2.1	186
15	Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns. PLoS ONE, 2015, 10, e0135680.	2.5	15
16	Structure of the Membrane Anchor of Pestivirus Glycoprotein Erns, a Long Tilted Amphipathic Helix. PLoS Pathogens, 2014, 10, e1003973.	4.7	30
17	Two Alternative Ways of Start Site Selection in Human Norovirus Reinitiation of Translation. Journal of Biological Chemistry, 2014, 289, 11739-11754.	3.4	16
18	A new type of intracellular retention signal identified in a pestivirus structural glycoprotein. FASEB Journal, 2012, 26, 3292-3305.	0.5	25

#	Article	IF	Citations
19	A New Type of Signal Peptidase Cleavage Site Identified in an RNA Virus Polyprotein. Journal of Biological Chemistry, 2010, 285, 8572-8584.	3.4	32
20	Mutation of Cysteine 171 of Pestivirus E ^{rns} RNase Prevents Homodimer Formation and Leads to Attenuation of Classical Swine Fever Virus. Journal of Virology, 2009, 83, 4823-4834.	3.4	46
21	The importance of inter- and intramolecular base pairing for translation reinitiation on a eukaryotic bicistronic mRNA. Genes and Development, 2009, 23, 331-344.	5.9	59
22	The Pestivirus Glycoprotein Erns Is Anchored in Plane in the Membrane via an Amphipathic Helix. Journal of Biological Chemistry, 2007, 282, 32730-32741.	3.4	46
23	Characterization of the Sequence Element Directing Translation Reinitiation in RNA of the Calicivirus Rabbit Hemorrhagic Disease Virus. Journal of Virology, 2007, 81, 9623-9632.	3.4	52
24	A Bipartite Sequence Motif Induces Translation Reinitiation in Feline Calicivirus RNA. Journal of Biological Chemistry, 2007, 282, 7056-7065.	3.4	56
25	Bovine Viral Diarrhea Virus: Prevention of Persistent Fetal Infection by a Combination of Two Mutations Affecting E rns RNase and N pro Protease. Journal of Virology, 2007, 81, 3327-3338.	3.4	84
26	The Carboxy-Terminal Sequence of the Pestivirus Glycoprotein E rns Represents an Unusual Type of Membrane Anchor. Journal of Virology, 2005, 79, 11901-11913.	3.4	51
27	Trans-complementation of autonomously replicating Bovine viral diarrhea virus replicons with deletions in the E2 coding region. Virology, 2003, 307, 213-227.	2.4	31
28	Translation of the Minor Capsid Protein of a Calicivirus Is Initiated by a Novel Termination-dependent Reinitiation Mechanism. Journal of Biological Chemistry, 2003, 278, 34051-34060.	3.4	77
29	Recovery of Virulent and RNase-Negative Attenuated Type 2 Bovine Viral Diarrhea Viruses from Infectious cDNA Clones. Journal of Virology, 2002, 76, 8494-8503.	3.4	51
30	Feline Calicivirus: Recovery of Wild-Type and Recombinant Viruses after Transfection of cRNA or cDNA Constructs. Journal of Virology, 2002, 76, 6398-6407.	3.4	37
31	Mutations Abrogating the RNase Activity in Glycoprotein E ^{rns} of the Pestivirus Classical Swine Fever Virus Lead to Virus Attenuation. Journal of Virology, 1999, 73, 10224-10235.	3.4	129
32	Characterization of an Autonomous Subgenomic Pestivirus RNA Replicon. Journal of Virology, 1998, 72, 2364-2372.	3.4	163
33	Molecular Characterization of Pestiviruses. Advances in Virus Research, 1996, 47, 53-118.	2.1	441
34	Genomic and subgenomic RNAs of rabbit hemorrhagic disease virus are both protein-linked and packaged into particles. Virology, 1991, 184, 677-686.	2.4	184
35	Genomic localization of hog cholera virus glycoproteins. Virology, 1990, 174, 286-289.	2.4	60
36	Hog cholera virus—characterization of specific antiserum and identification of cDNA clones. Virology, 1989, 171, 18-27.	2.4	67

#	Article	IF	CITATIONS
37	Ubiquitin in a togavirus. Nature, 1989, 341, 491-491.	27.8	133