Adrian Ungureanu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/950422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cuae Ga <mm:math xmins:mml="http://www.w3.org/1998/Math/MathML"><mmi:msub><mmi:mrow /><mmi:mn>2</mmi:mn></mmi:mrow </mmi:msub>O<mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mmi:msub><mmi:mrow /><mmi:mn>3</mmi:mn></mmi:mrow </mmi:msub><mmi:msub><mmi:mrow< td=""><td>0.2</td><td>0</td></mmi:mrow<></mmi:msub></mmi:math </mm:math>	0.2	0
2	Hydrodeoxygenation of m-cresol over Pd/Al-SBA-15 catalysts: Effect of Al content on the deoxygenation reaction pathways. Applied Catalysis A: General, 2022, 641, 118686.	2.2	10
3	Playing on 3D spatial distribution of Cu-Co (oxide) nanoparticles in inorganic mesoporous sieves: Impact on catalytic performance toward the cinnamaldehyde hydrogenation. Applied Catalysis A: General, 2021, 623, 118303.	2.2	4
4	MnO _x â€loaded Mesoporous Silica for the Catalytic Oxidation of Formaldehyde. Effect of the Melt Infiltration Conditions on the Activity – Stability Behavior. ChemCatChem, 2020, 12, 1664-1675.	1.8	6
5	Enhancement of the dispersion and catalytic performances of copper in the hydrogenation of cinnamaldehyde by incorporation of aluminium into mesoporous SBA-15 silica. Applied Catalysis A: General, 2020, 598, 117615.	2.2	9
6	Phyllosilicateâ€derived Nickelâ€cobalt Bimetallic Nanoparticles for the Catalytic Hydrogenation of Imines, Oximes and Nâ€heteroarenes. ChemCatChem, 2020, 12, 4652-4663.	1.8	25
7	Emulsions Stabilized with Alumina-Functionalized Mesoporous Silica Particles. Langmuir, 2020, 36, 3212-3220.	1.6	9
8	Selective Hydrogenation of Xylose to Xylitol over Co/SiO ₂ Catalysts. ChemCatChem, 2020, 12, 1973-1978.	1.8	23
9	Preparation of nickel (oxide) nanoparticles confined in the secondary pore network of mesoporous scaffolds using melt infiltration. Catalysis Today, 2019, 334, 48-58.	2.2	26
10	Selective dissolution of TiO2 crystalline phases: Physicochemical characterization and photocatalytic activity. Comptes Rendus Chimie, 2018, 21, 382-390.	0.2	2
11	Confining for Stability: Heterogeneous Catalysis with Transition Metal (Oxide) Nanoparticles Confined in the Secondary Pore Network of Mesoporous Scaffolds. ChemNanoMat, 2017, 3, 233-237.	1.5	14
12	Synthesis of highly dispersed iron species within mesoporous (Al-)SBA-15 silica as efficient heterogeneous Fenton-type catalysts. Microporous and Mesoporous Materials, 2017, 241, 326-337.	2.2	32
13	Improved dispersion of transition metals in mesoporous materials through a polymer-assisted melt infiltration method. Catalysis Science and Technology, 2017, 7, 5448-5456.	2.1	23
14	Highly dispersed copper (oxide) nanoparticles prepared on SBA-15 partially occluded with the P123 surfactant: toward the design of active hydrogenation catalysts. Catalysis Science and Technology, 2017, 7, 5376-5385.	2.1	30
15	Facile synthesis of highly dispersed and thermally stable copper-based nanoparticles supported on SBA-15 occluded with P123 surfactant for catalytic applications. Journal of Catalysis, 2016, 339, 270-283.	3.1	48
16	Controlling the distribution of cobalt (oxide) nanoparticles in the dual pore system of SBA-15 scaffolds. Microporous and Mesoporous Materials, 2016, 224, 176-189.	2.2	11
17	Selective conversion of styrene oxide to 2-phenylethanol in cascade reactions over non-noble metal catalysts. Catalysis Science and Technology, 2016, 6, 468-478.	2.1	10
18	Selective Hydrogenation of Furfural to Furfuryl Alcohol in the Presence of a Recyclable Cobalt/SBAâ€15 Catalyst. ChemSusChem, 2015, 8, 1885-1891.	3.6	161

#	Article	IF	CITATIONS
19	An efficient route to prepare highly dispersed metallic copper nanoparticles on ordered mesoporous silica with outstanding activity for hydrogenation reactions. Catalysis Science and Technology, 2015, 5, 3735-3745.	2.1	16
20	Structural and catalytic properties of mono- and bimetallic nickel–copper nanoparticles derived from MgNi(Cu)Al-LDHs under reductive conditions. Applied Catalysis A: General, 2015, 504, 92-102.	2.2	33
21	COPPER NANOPARTICLES SUPPORTED ON POLYETHERFUNCTIONALIZED MESOPOROUS SILICA. SYNTHESIS AND APPLICATION AS HYDROGENATION CATALYSTS. Environmental Engineering and Management Journal, 2015, 14, 399-408.	0.2	4
22	NiAl and CoAl materials derived from takovite-like LDHs and related structures as efficient chemoselective hydrogenation catalysts. Catalysis Science and Technology, 2014, 4, 179-189.	2.1	125
23	Nanosized transition metals in controlled environments of phyllosilicate–mesoporous silica composites as highly thermostable and active catalysts. Chemical Communications, 2013, 49, 7665.	2.2	40
24	Composition-Dependent Morphostructural Properties of Ni–Cu Oxide Nanoparticles Confined within the Channels of Ordered Mesoporous SBA-15 Silica. ACS Applied Materials & Interfaces, 2013, 5, 3010-3025.	4.0	140
25	Enhancing the performance of SBA-15-supported copper catalysts by chromium addition for the chemoselective hydrogenation of trans-cinnamaldehyde. Catalysis Science and Technology, 2013, 3, 2319.	2.1	30
26	Effect of aluminium incorporation by the "pH-adjusting―method on the structural, acidic and catalytic properties of mesoporous SBA-15. Microporous and Mesoporous Materials, 2012, 163, 51-64.	2.2	71
27	CONTROLLING THE ACTIVITY AND CHEMOSELECTIVITY IN THE CINNAMALDEHYDE HYDROGENATION BY INSERTION OF NONNOBLE METALS IN THE MATRIX OF HYDROALCITE-LIKE MATERIALS. Environmental Engineering and Management Journal, 2012, 11, 47-54.	0.2	7
28	Effect of chemical composition of SBA-15 on the adsorption and catalytic activity of α-chymotrypsin. Journal of Materials Chemistry, 2011, 21, 15619.	6.7	19
29	Synthesis of highly thermostable copper-nickel nanoparticles confined in the channels of ordered mesoporous SBA-15 silica. Journal of Materials Chemistry, 2011, 21, 12529.	6.7	82
30	SYNTHESIS OF NEW CATALYSTS BY INSERTION OF Co AND Cu IN THE MATRIX OF HYDROTALCITE-LIKE MATERIALS FOR CINNAMALDEHYDE HYDROGENATION. Environmental Engineering and Management Journal, 2011, 10, 1561-1571.	0.2	2
31	New HDS catalysts based on thiol functionalized mesoporous silica supports. Applied Catalysis A: General, 2010, 386, 43-50.	2.2	16
32	Cu, Ni - BASED HYDROTALCITE - LIKE COMPOUNDS AS CATALYSTS FOR THE HYDROGENATION OF CINNAMALDEHYDE IN LIQUID PHASE. PART 2: INFLUENCE OF REACTION CONDITIONS AND CHEMICAL COMPOSITION ON THE CATALYTIC PROPERTIES. Environmental Engineering and Management Journal, 2010, 9, 1203-1210.	0.2	7
33	Hydrogenation of Unsaturated Carbonyl Compounds on non-Calcined LDHs. I. Synthesis and Characterization of ZnNiCuAl Hydrotalcite-like Materials. Acta Chimica Slovenica, 2010, 57, 677-85.	0.2	6
34	CsHSO4/MESOPOROUS SILICA COMPOSITES - NEW ELECTROLYTES FOR SOLID ACID FUEL CELLS. Environmental Engineering and Management Journal, 2009, 8, 1-9.	0.2	4
35	SYNTHESIS OF HIGHLY ORDERED TITANIUM-CONTAINING SBA-15 MESOPOROUS SILICAS FOR CATALYTIC ECO-FRIENDLY OXIDATIONS. Environmental Engineering and Management Journal, 2008, 7, 255-262.	0.2	3
36	Acid properties of semicrystalline zeolitic mesoporous UL-ZSM-5 materials. Journal of Thermal Analysis and Calorimetry, 2007, 87, 417-422.	2.0	2

Adrian Ungureanu

#	Article	IF	CITATIONS
37	Structural and Diffusion Characterizations of Steam-Stable Mesostructured Zeolitic UL-ZSM-5 Materials. Langmuir, 2006, 22, 4777-4786.	1.6	29
38	Effect of the acid properties on the diffusion of C7 hydrocarbons in UL-ZSM-5 materials. Microporous and Mesoporous Materials, 2006, 92, 117-128.	2.2	25
39	Aldol condensation of aldehydes over semicrystalline zeolitic-mesoporous UL-ZSM-5. Microporous and Mesoporous Materials, 2005, 84, 283-296.	2.2	36
40	An investigation of the acid properties of UL-ZSM-5 by FTIR of adsorbed 2,6-ditertbutylpyridine and aromatic transalkylation test reaction. Applied Catalysis A: General, 2005, 294, 92-105.	2.2	38
41	Hydroxylation of 1-naphthol by hydrogen peroxide over UL-TS-1 and TS-1 coated MCF. Applied Catalysis A: General, 2003, 254, 203-223.	2.2	35
42	TS-1 coated mesocellular titano-silica foams as new catalysts for oxidation of bulky molecules. Physical Chemistry Chemical Physics, 2003, 5, 3534.	1.3	30