Gary Ellis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9504007/publications.pdf Version: 2024-02-01

	101384	133063
4,372	36	59
citations	h-index	g-index
132	132	5307
docs citations	times ranked	citing authors
	citations 132	4,372 36 citations h-index 132 132

CADY FLUS

#	Article	IF	CITATIONS
1	Recent Advances in the Covalent Modification of Graphene With Polymers. Macromolecular Rapid Communications, 2011, 32, 1771-1789.	2.0	272
2	High-performance nanocomposites based on polyetherketones. Progress in Materials Science, 2012, 57, 1106-1190.	16.0	222
3	Development and characterization of PEEK/carbon nanotube composites. Carbon, 2009, 47, 3079-3090.	5.4	170
4	Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites. Progress in Polymer Science, 2013, 38, 1163-1231.	11.8	154
5	Identification of high performance solvents for the sustainable processing of graphene. Green Chemistry, 2017, 19, 2550-2560.	4.6	133
6	High-quality few layer graphene produced by electrochemical intercalation and microwave-assisted expansion of graphite. Carbon, 2011, 49, 2809-2816.	5.4	125
7	Comparative study of the nucleation activity of third-generation sorbitol-based nucleating agents for isotactic polypropylene. Journal of Applied Polymer Science, 2002, 84, 2440-2450.	1.3	104
8	Activity of a Î ² -nucleating agent for isotactic polypropylene and its influence on polymorphic transitions. Journal of Applied Polymer Science, 2002, 86, 531-539.	1.3	96
9	Effect of Click-Chemistry Approaches for Graphene Modification on the Electrical, Thermal, and Mechanical Properties of Polyethylene/Graphene Nanocomposites. Macromolecules, 2013, 46, 8980-8987.	2.2	96
10	Multiscale fiber-reinforced thermoplastic composites incorporating carbon nanotubes: A review. Current Opinion in Solid State and Materials Science, 2014, 18, 62-80.	5.6	90
11	The influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites. Nanotechnology, 2009, 20, 315707.	1.3	87
12	Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Composites Part A: Applied Science and Manufacturing, 2012, 43, 603-612.	3.8	83
13	The application of fourier transform raman spectroscopy to the study of paint systems. Spectrochimica Acta Part A: Molecular Spectroscopy, 1990, 46, 227-241.	0.1	79
14	Polymorphic Transformation in Isotactic 1-Butene/Ethylene Copolymers. Macromolecules, 2004, 37, 3755-3762.	2.2	78
15	Graphene Functionalisation with a Conjugated Poly(fluorene) by Click Coupling: Striking Electronic Properties in Solution. Chemistry - A European Journal, 2012, 18, 4965-4973.	1.7	75
16	Applications of Fourier Transform Raman spectroscopy in the synthetic polymer field. Spectrochimica Acta Part A: Molecular Spectroscopy, 1990, 46, 197-216.	0.1	72
17	Carbohydrate Hydrogen-Bonding Cooperativity â~' Intramolecular Hydrogen Bonds and Their Cooperative Effect on Intermolecular Processes â~' Binding to a Hydrogen-Bond Acceptor Molecule. European Journal of Organic Chemistry, 2002, 2002, 840-855.	1.2	69
18	Highly efficient nucleating additive for isotactic polypropylene studied by differential scanning calorimetry. Journal of Applied Polymer Science, 2002, 84, 1669-1679.	1.3	68

#	Article	IF	CITATIONS
19	A study of the autoxidation of some unsaturated fatty acid methyl esters using Fourier transform Raman spectroscopy. Spectrochimica Acta Part A: Molecular Spectroscopy, 1991, 47, 1375-1388.	0.1	57
20	Rheological and Tribological Properties of Carbon Nanotube/Thermoplastic Nanocomposites Incorporating Inorganic Fullerene-Like WS ₂ Nanoparticles. Journal of Physical Chemistry B, 2012, 116, 7959-7969.	1.2	57
21	Starch-derived carbonaceous mesoporous materials (Starbon®) for the selective adsorption and recovery of critical metals. Green Chemistry, 2015, 17, 2146-2149.	4.6	57
22	Routine analytical Fourier transform Raman spectroscopy. Analyst, The, 1989, 114, 1061-1066.	1.7	56
23	Influence of a nucleating agent on the crystallization behaviour of isotactic polypropylene and elastomer blends. Polymer, 2007, 48, 5324-5331.	1.8	55
24	Use of optical fibres in Raman spectroscopy. Journal of Raman Spectroscopy, 1988, 19, 413-418.	1.2	54
25	Fourier transform raman spectroscopy of elastomers: An overview. Spectrochimica Acta Part A: Molecular Spectroscopy, 1990, 46, 217-226.	0.1	48
26	Analysis of the isothermal crystallization of isotactic polypropylene nucleated with sorbitol derivatives. Journal of Applied Polymer Science, 2003, 88, 2261-2274.	1.3	48
27	Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes. Nature Astronomy, 2020, 4, 97-105.	4.2	48
28	Thermal decomposition of technological polymer blends 1. Poly(aryl ether ether ketone) with a thermotropic liquid crystalline polymer. Polymer Degradation and Stability, 1999, 66, 405-413.	2.7	47
29	Morphology and thermal properties of novel poly(phenylene sulfide) hybrid nanocomposites based on single-walled carbon nanotubes and inorganic fullerene-like WS ₂ nanoparticles. Journal of Materials Chemistry, 2012, 22, 1418-1425.	6.7	45
30	Electromagnetic and Dynamic Mechanical Properties of Epoxy and Vinylester-Based Composites Filled with Graphene Nanoplatelets. Polymers, 2016, 8, 272.	2.0	45
31	Optimizing the balance between impact strength and stiffness in polypropylene/elastomer blends by incorporation of a nucleating agent. Polymer Engineering and Science, 2008, 48, 80-87.	1.5	42
32	Chemically synthesized chevron-like graphene nanoribbons for electrochemical sensors development: determination of epinephrine. Scientific Reports, 2020, 10, 14614.	1.6	40
33	Flammability properties of PEEK and carbon nanotube composites. Polymer Degradation and Stability, 2012, 97, 2492-2502.	2.7	39
34	Development of novel melt-processable biopolymer nanocomposites based on poly(l-lactic acid) and WS2 inorganic nanotubes. CrystEngComm, 2014, 16, 5062.	1.3	39
35	Novel poly(3-hydroxybutyrate) nanocomposites containing WS2 inorganic nanotubes with improved thermal, mechanical and tribological properties. Materials Chemistry and Physics, 2014, 147, 273-284.	2.0	38
36	Synchrotron Infrared Microscopy Study of the Crystalline Morphology of the Interphase in Polypropylene/LCPâ€Fiber Model Composites. Journal of Macromolecular Science - Physics, 2004, 43, 191-206.	0.4	37

#	Article	IF	CITATIONS
37	The crystallization of polypropylene in multiwall carbon nanotubeâ€based composites. Polymer Composites, 2011, 32, 324-333.	2.3	34
38	A versatile chemical tool for the preparation of conductive graphene-based polymer nanocomposites. Chemical Communications, 2013, 49, 8967.	2.2	33
39	Thermal properties, structure and morphology of PEEK/thermotropic liquid crystalline polymer blends. Polymer International, 2003, 52, 1876-1886.	1.6	31
40	Isothermal crystallisation of iPP/Vectra blends by DSC and simultaneous SAXS and WAXS measurements employing synchrotron radiation. Polymer, 2003, 44, 5209-5217.	1.8	30
41	Chemistry below graphene: Decoupling epitaxial graphene from metals by potential-controlled electrochemical oxidation. Carbon, 2018, 129, 837-846.	5.4	30
42	Fungal biodeterioration of color cinematographic films of the cultural heritage ofÂCuba. International Biodeterioration and Biodegradation, 2013, 84, 372-380.	1.9	29
43	Timeâ€Resolved SAXS/WAXS Studies of the Polymorphic Transformation of 1â€Butene/Ethylene Copolymers. Journal of Macromolecular Science - Physics, 2004, 43, 177-189.	0.4	28
44	Title is missing!. Magyar Apróvad Közlemények, 2002, 68, 61-74.	1.4	27
45	Opportunities and challenges for polymer science using synchrotron-based infrared spectroscopy. European Polymer Journal, 2016, 81, 505-531.	2.6	27
46	Morphology and thermal properties of biodegradable poly(hydroxybutyrate-co-hydroxyvalerate)/tungsten disulphide inorganic nanotube nanocomposites. Materials Chemistry and Physics, 2016, 170, 145-153.	2.0	27
47	Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles. Scientific Reports, 2018, 8, 7250.	1.6	27
48	FT Raman study of orientation and crystallization processes in poly(ethylene terephthalate). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1995, 51, 2139-2145.	2.0	26
49	The Study of Heterogeneous Polymer Systems by Synchrotron Infrared Microscopy. Journal of Macromolecular Science - Physics, 2004, 43, 253-266.	0.4	25
50	Highly resolved transmission infrared microscopy in polymer science. Infrared Physics and Technology, 2004, 45, 349-364.	1.3	25
51	Thermomechanical relaxation and different water states in cottonseed protein derived bioplastics. RSC Advances, 2014, 4, 32320.	1.7	25
52	Nature of the Crystalline Interphase in Sheared IPP/Vectra Fiber Model Composites by Microfocus X-ray Diffraction and IR Microspectroscopy Using Synchrotron Radiation. Macromolecules, 2006, 39, 5564-5568.	2.2	23
53	Novel Polypropylene/Inorganic Fullerene-like WS ₂ Nanocomposites Containing a β-Nucleating Agent: Isothermal Crystallization and Melting Behavior. Journal of Physical Chemistry B, 2012, 116, 1788-1795.	1.2	23
54	Novel polypropylene/inorganic fullerene-like WS2 nanocomposites containing a β-nucleating agent: Mechanical, tribological and rheological properties. Materials Chemistry and Physics, 2014, 144, 98-106.	2.0	23

#	Article	IF	CITATIONS
55	Inorganic WS ₂ nanotubes that improve the crystallization behavior of poly(3-hydroxybutyrate). CrystEngComm, 2014, 16, 1126-1135.	1.3	23
56	Non-Isothermal Cold-Crystallization Behavior and Kinetics of Poly(l-Lactic Acid)/WS2 Inorganic Nanotube Nanocomposites. Polymers, 2015, 7, 2175-2189.	2.0	23
57	Scalable graphene-based nanocomposite coatings for flexible and washable conductive textiles. Carbon, 2020, 167, 495-503.	5.4	23
58	Fourier transform Raman spectroscopic study of main-chain thermotropic liquid crystalline polyesters. Spectrochimica Acta Part A: Molecular Spectroscopy, 1991, 47, 1353-1366.	0.1	22
59	Melting behavior in blends of isotactic polypropylene and a liquid crystalline polymer. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1949-1959.	2.4	22
60	Local mechanical properties of graphene/polyethylene-based nanocomposites by depth-sensing indentation. European Polymer Journal, 2016, 74, 120-129.	2.6	22
61	The Relevance of Carbohydrate Hydrogen-Bonding Cooperativity Effects: A Cooperative 1,2-trans-Diaxial Diol and Amido Alcohol Hydrogen-Bonding Array as an Efficient Carbohydrate–Phosphate Binding Motif in Nonpolar Media. Chemistry - A European Journal, 2002, 8, 1908.	1.7	21
62	Analysis of the isothermal crystallization of polypropylene/wood flour composites. Journal of Thermal Analysis and Calorimetry, 2008, 94, 119-127.	2.0	21
63	Study of the crosslink density, dynamo-mechanical behaviour and microstructure of hot and cold SBR vulcanizates. Journal of Polymer Research, 2010, 17, 99-107.	1.2	21
64	Novel Polypropylene/Inorganic Fullerene-like WS ₂ Nanocomposites Containing a β-Nucleating Agent: Dynamic Crystallization and Melting Behavior. Journal of Physical Chemistry B, 2011, 115, 10836-10843.	1.2	21
65	The morphology and polymorphism of self-nucleated trigonal isotactic poly(1-butene) studied by synchrotron IR microspectroscopy. CrystEngComm, 2016, 18, 816-828.	1.3	21
66	New Perspectives on Graphene/Polymer Fibers and Fabrics for Smart Textiles: The Relevance of the Polymer/Graphene Interphase. Frontiers in Materials, 2018, 5, .	1.2	21
67	Dynamic crystallization of polypropylene and wood-based composites. Journal of Applied Polymer Science, 2006, 102, 6028-6036.	1.3	20
68	Effect of particle size and a processing aid on the crystallization and melting behavior of iPP/red pine wood flour composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 935-949.	3.8	20
69	A 2D tungsten disulphide/diamond nanoparticles hybrid for an electrochemical sensor development towards the simultaneous determination of sunset yellow and quinoline yellow. Sensors and Actuators B: Chemical, 2020, 324, 128731.	4.0	20
70	Laser microperforated biodegradable microbial polyhydroxyalkanoate substrates for tissue repair strategies: an infrared microspectroscopy study. Analytical and Bioanalytical Chemistry, 2011, 399, 2379-2388.	1.9	19
71	Characterization of surfaceâ€modified polyalkanoate films for biomedical applications. Journal of Applied Polymer Science, 2011, 119, 3286-3296.	1.3	19
72	Polymorphism in liquid crystalline poly[tetramethylene terephthaloyl bis(4-oxybenzoate)]. Macromolecules, 1992, 25, 4642-4648.	2.2	18

#	Article	IF	CITATIONS
73	Comparative study of the covalent diazotization of graphene and carbon nanotubes using thermogravimetric and spectroscopic techniques. Physical Chemistry Chemical Physics, 2013, 15, 16806.	1.3	18

Fourier transform vibrational spectroscopy in the study of poly (aryl ether sulphone), poly (aryl) Tj ETQq0 0 0 rgBT $\frac{10}{1.8}$ Tf 50 70

75	Flexible film materials from conjugated dye-modified polymer surfactant-induced aqueous graphene dispersions. Journal of Materials Chemistry, 2011, 21, 16129.	6.7	17
76	Homogenous thin layer coated graphene via one pot reaction with multidentate thiolated PMMAs. Journal of Materials Chemistry C, 2014, 2, 1723.	2.7	17
77	The overlooked role of reduced graphene oxide in the reinforcement of hydrophilic polymers. Journal of Materials Chemistry C, 2015, 3, 1177-1180.	2.7	17
78	Graphene and Polyethylene: A Strong Combination Towards Multifunctional Nanocomposites. Polymers, 2020, 12, 2094.	2.0	17
79	On the presence of polytetrahydrofuran in the polyspiro-phosphazenes [NP(O2C12H8)]n prepared from [NPCl2]n and 2,2?-dihydroxybiphenyl in THF as solvent. Journal of Applied Polymer Science, 2000, 77, 568-576.	1.3	16
80	A Nd:YAG laser-microperforated poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-basal membrane matrix composite film as substrate for keratinocytes. Biomaterials, 2007, 28, 650-660.	5.7	16
81	A Solventâ€Free Dispersion Method for the Preparation of PET/MWCNT Composites. Macromolecular Materials and Engineering, 2010, 295, 652-659.	1.7	16
82	Flexible Bionanocomposites from Epoxidized Hemp Seed Oil Thermosetting Resin Reinforced with Halloysite Nanotubes. Journal of Physical Chemistry B, 2017, 121, 2454-2467.	1.2	16
83	The thermal decomposition of poly[alkyl-4,4′-(terephthaloyldioxy)dibenzoate]s. European Polymer Journal, 1994, 30, 621-627.	2.6	15
84	Conformational restriction by intramolecular hydrogen bonding. Carbohydrate-carbohydrate self-assembly. Tetrahedron Letters, 1997, 38, 1659-1662.	0.7	15
85	Green preparation of tuneable carbon–silica composite materials from wastes. Journal of Materials Chemistry A, 2015, 3, 14148-14156.	5.2	15
86	Isothermal crystallization kinetics of PEEK/Vectra® blends by DSC and time-resolved synchrotron X-ray diffraction. Polymer Engineering and Science, 2006, 46, 1411-1418.	1.5	14
87	Crystalline Transformations in Nylon-6/Single-Walled Carbon Nanotube Nanocomposites. Journal of Nanoscience and Nanotechnology, 2009, 9, 6120-6126.	0.9	14
88	Integration of block copolymer-wrapped single-wall carbon nanotubes into a trifunctional epoxy resin. Influence on thermal performance. Polymer Degradation and Stability, 2010, 95, 2065-2075.	2.7	14
89	Mild Catalytic Functionalization of Styrene–Butadiene Rubbers. Macromolecules, 2012, 45, 9267-9274.	2.2	14
90	Poly(vinyl chloride)/Multiwalled Carbon Nanotube Nanocomposites: Effect of the Tacticity Distribution on the Polymer/Nanofiller Interface. Journal of Physical Chemistry C, 2012, 116, 18256-18262.	1.5	14

#	Article	IF	CITATIONS
91	Kinetic analysis of thermo-oxidative degradation of PEEK/thermotropic liquid crystalline polymer blends. Polymer Engineering and Science, 2006, 46, 129-138.	1.5	13
92	Microstructure, morphology, and mechanical properties of styreneâ€butadiene rubber/organoclay nanocomposites. Polymer Engineering and Science, 2011, 51, 1720-1729.	1.5	13
93	Infrared synchrotron radiation from bending magnet and edge radiation sources for the study of orientation and conformation in anisotropic materials. Review of Scientific Instruments, 2011, 82, 033710.	0.6	13
94	Polymer Blend Nanocomposites: Effect of Selective Nanotube Location on the Properties of a Semicrystalline Thermoplastic-Toughened Epoxy Thermoset. Macromolecular Materials and Engineering, 2014, 299, 1430-1444.	1.7	13
95	Monolithic mesoporous graphitic composites as super capacitors: from Starbons to Starenes®. Journal of Materials Chemistry A, 2018, 6, 1119-1127.	5.2	13
96	On‣urface Bottomâ€Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior. Angewandte Chemie - International Edition, 2018, 57, 8582-8586.	7.2	13
97	Thermal degradation behaviour of 2-hydroxyethyl methacrylate–tert-butyl acrylate copolymers. Polymer Degradation and Stability, 2002, 76, 205-210.	2.7	12
98	Synthesis of a [60] fullerene—Functionalized isotactic polypropylene derivative. Journal of Polymer Science Part A, 2008, 46, 6722-6733.	2.5	12
99	Facile one-pot exfoliation and integration of 2D layered materials by dispersion in a photocurable polymer precursor. Nanoscale, 2017, 9, 10590-10595.	2.8	12
100	Modifications in the mesogenic unit of poly(oxytetramethyleneoxycarbonyl-3-chloro-1,4-phenyleneoxyterephthaloyloxy-2-chloro-1,4-phenylenecarbonyl). Macromolecular Chemistry and Physics, 1994, 195, 2049-2056.	1.1	11
101	Thermal stability of thermotropic liquid crystals: poly(alkyl-4,4′-diphenoxy terephthalate)s. Polymer Degradation and Stability, 1993, 41, 333-340.	2.7	10
102	Analysis of the influence of chemical structure and thermal history on thermotropic liquid crystal polyesters by infrared and Raman spectroscopy. Vibrational Spectroscopy, 1995, 9, 49-56.	1.2	10
103	Bio-based polymer nanocomposites based on nylon 11 and WS ₂ inorganic nanotubes. RSC Advances, 2015, 5, 17879-17887.	1.7	10
104	Oxygen intercalation in PVD graphene grown on copper substrates: A decoupling approach. Applied Surface Science, 2020, 529, 147100.	3.1	10
105	Versatile Graphene-Based Platform for Robust Nanobiohybrid Interfaces. ACS Omega, 2019, 4, 3287-3297.	1.6	9
106	Anhydride-based chemistry on graphene for advanced polymeric materials. RSC Advances, 2016, 6, 36656-36660.	1.7	8
107	Adsorption and coupling of 4-aminophenol on Pt(111) surfaces. Surface Science, 2016, 646, 5-12.	0.8	8
108	Effect of WS2 Inorganic Nanotubes on Isothermal Crystallization Behavior and Kinetics of Poly(3-Hydroxybutyrate-co-3-hydroxyvalerate). Polymers, 2018, 10, 166.	2.0	8

#	Article	IF	CITATIONS
109	Probing the binding site of 800-nm bacteriochlorophyll in the membrane-linked LH2 protein of Rhodobacter capsulatus by local unfolding and chemical modification. FEBS Journal, 2001, 268, 2792-2800.	0.2	7
110	Studies on the heterogeneity of polymeric systems by vibrational microscopy1. Macromolecular Symposia, 2002, 184, 37-48.	0.4	7
111	Onâ€&urface Bottomâ€Up Synthesis of Azine Derivatives Displaying Strong Acceptor Behavior. Angewandte Chemie, 2018, 130, 8718-8722.	1.6	7
112	Metal-catalyst-free gas-phase synthesis of long-chain hydrocarbons. Nature Communications, 2021, 12, 5937.	5.8	7
113	The influence of asymmetric lateral branching in the flexible spacer on the properties of a main-chain thermotropic liquid crystal polyester. Polymer Bulletin, 1994, 33, 505-512.	1.7	6
114	Structural effects on the thermal degradation of main-chain thermotropic liquid crystal polyesters. Vibrational Spectroscopy, 1995, 9, 43-48.	1.2	6
115	Microfocus X-ray scattering and micro-Raman spectroscopy: Transcrystallinity in isotactic polypropylene. Physica Status Solidi - Rapid Research Letters, 2014, 8, 724-727.	1.2	6
116	Biochemical profiling of rat embryonic stem cells grown on electrospun polyester fibers using synchrotron infrared microspectroscopy. Analytical and Bioanalytical Chemistry, 2018, 410, 3649-3660.	1.9	6
117	Polymers for aluminium secondary batteries: Solubility, ionogel formation and chloroaluminate speciation. Polymer, 2021, 224, 123707.	1.8	6
118	Advanced Vibrational Microspectroscopic Study of Conformational Changes within a Craze in Poly(ethylene terephthalate). Macromolecules, 2015, 48, 1162-1168.	2.2	5
119	On‣urface Driven Formal Michael Addition Produces m â€Polyaniline Oligomers on Pt(111). Angewandte Chemie - International Edition, 2020, 59, 23220-23227.	7.2	5
120	Polarization modulated infrared spectroscopy: A pragmatic tool for polymer science and engineering. Polymer Crystallization, 2020, 3, e10138.	0.5	5
121	Raman spectroscopic study of a substituted poly(phosphazene). Polymer Bulletin, 1991, 25, 351-356.	1.7	4
122	Polarization-modulated synchrotron infrared microspectroscopy for the study of crystalline morphology in some semicrystalline polyolefins. Journal of Physics: Conference Series, 2012, 359, 012005.	0.3	4
123	Chloroaluminate Gel Electrolytes Prepared with Copolymers Based on Imidazolium Ionic Liquids and Deep Eutectic Solvent AlCl3:Urea. Polymers, 2021, 13, 1050.	2.0	4
124	Relation between chemical composition, morphology, and microstructure of poly(ether ether) Tj ETQq0 0 0 rgB1 Journal of Materials Science, 2022, 57, 5839-5854.	/Overlock 1.7	2 10 Tf 50 142 4
125	The molecular structure of flowing polymer melts. European Polymer Journal, 1990, 26, 667-673.	2.6	2
126	INFRA-ICE: An ultra-high vacuum experimental station for laboratory astrochemistry. Review of Scientific Instruments, 2020, 91, 124101.	0.6	2

8

#	Article	IF	CITATIONS
127	Onâ€Surface Driven Formal Michael Addition Produces m â€Polyaniline Oligomers on Pt(111). Angewandte Chemie, 2020, 132, 23420-23427.	1.6	1
128	Caracterización de la heterogeneidad estructural en polipropileno polimórfico mediante espectroscopia vibracional: microscopia IR y Raman. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 340-344.	0.9	1
129	Influence of carbon nanotubes on the properties of epoxy based composites reinforced with a semicrystalline thermoplastic. IOP Conference Series: Materials Science and Engineering, 2014, 64, 012006.	0.3	Ο
130	Fabrication of carbon-based nanocomposites with enhanced mechanical and electromagnetic properties. , 2015, , .		0