List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9503804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Substrate usage determines carbon flux <i>via</i> the citrate cycle in <i>Helicobacter pylori</i> . Molecular Microbiology, 2021, 116, 841-860.	2.5	8
2	From the beginning to the present state of molecular microbial pathogenesis—A tribute to Pascale Cossart. Molecular Microbiology, 2020, 113, 538-540.	2.5	0
3	Persistence of Intracellular Bacterial Pathogens—With a Focus on the Metabolic Perspective. Frontiers in Cellular and Infection Microbiology, 2020, 10, 615450.	3.9	26
4	How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Frontiers in Cellular and Infection Microbiology, 2019, 9, 42.	3.9	149
5	Metabolic adaptation of <i>Chlamydia trachomatis</i> to mammalian host cells. Molecular Microbiology, 2017, 103, 1004-1019.	2.5	46
6	To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 316.	3.9	45
7	Pathway analysis using ¹³ Câ€glycerol and other carbon tracers reveals a bipartite metabolism of <i>Legionella pneumophila</i> . Molecular Microbiology, 2016, 100, 229-246.	2.5	51
8	Metabolic Adaptations of Intracellullar Bacterial Pathogens and their Mammalian Host Cells during Infection ("Pathometabolismâ€ <mark>)</mark> . Microbiology Spectrum, 2015, 3, .	3.0	52
9	Listeria arpJGene Modifies T Helper Type 2 Subset Differentiation. Journal of Infectious Diseases, 2015, 212, 223-233.	4.0	1
10	Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism. Frontiers in Cellular and Infection Microbiology, 2014, 4, 156.	3.9	65
11	Overview of the Bacterial Pathogens. , 2014, , 3-23.		2
12	Metabolic host responses to infection by intracellular bacterial pathogens. Frontiers in Cellular and Infection Microbiology, 2013, 3, 24.	3.9	169
13	Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics, 2012, 13, 144.	2.8	88
14	Metabolic Responses of Primary and Transformed Cells to Intracellular Listeria monocytogenes. PLoS ONE, 2012, 7, e52378.	2.5	43
15	Metabolic adaptation of human pathogenic and related nonpathogenic bacteria to extra- and intracellular habitats. FEMS Microbiology Reviews, 2012, 36, 435-462.	8.6	98
16	Specific antibody-receptor interactions trigger InIAB-independent uptake of listeria monocytogenes into tumor cell lines. BMC Microbiology, 2011, 11, 163.	3.3	5
17	Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modelling. BMC Genomics, 2010, 11, 573.	2.8	51
18	Maltose and Maltodextrin Utilization by Listeria monocytogenes Depend on an Inducible ABC Transporter which Is Repressed by Glucose. PLoS ONE, 2010, 5, e10349.	2.5	58

WERNER GOEBEL

#	Article	IF	CITATIONS
19	Carbon Metabolism of Enterobacterial Human Pathogens Growing in Epithelial Colorectal Adenocarcinoma (Caco-2) Cells. PLoS ONE, 2010, 5, e10586.	2.5	64
20	Glucose and glucose 6-phosphate as carbon sources in extra- and intracellular growth of enteroinvasive Escherichia coli and Salmonella enterica. Microbiology (United Kingdom), 2010, 156, 1176-1187.	1.8	40
21	Complete Genome Sequence of <i>Listeria seeligeri</i> , a Nonpathogenic Member of the Genus <i>Listeria</i> . Journal of Bacteriology, 2010, 192, 1473-1474.	2.2	23
22	The major PEP-phosphotransferase systems (PTSs) for glucose, mannose and cellobiose of Listeria monocytogenes, and their significance for extra- and intracellular growth. Microbiology (United) Tj ETQq0 0 0 rgE	BT 1/Q verloo	ck7£0 Tf 50 6
23	Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nature Reviews Microbiology, 2010, 8, 401-412.	28.6	338
24	Pyruvate Carboxylase Plays a Crucial Role in Carbon Metabolism of Extra- and Intracellularly Replicating <i>Listeria monocytogenes</i> . Journal of Bacteriology, 2010, 192, 1774-1784.	2.2	66
25	The bacterial virulence factor InIC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nature Cell Biology, 2009, 11, 1212-1218.	10.3	168
26	In vitro transcription of PrfA-dependent and â€ ⁻ -independent genes of Listeria monocytogenes. Molecular Microbiology, 2008, 42, 111-120.	2.5	19
27	Carbon metabolism of <i>Listeria monocytogenes</i> growing inside macrophages. Molecular Microbiology, 2008, 69, 1008-1017.	2.5	123
28	Modulation of PrfA activity in Listeria monocytogenes upon growth in different culture media. Microbiology (United Kingdom), 2008, 154, 3856-3876.	1.8	52
29	Listeria monocytogenes as novel carrier system for the development of live vaccines. International Journal of Medical Microbiology, 2008, 298, 45-58.	3.6	31
30	Glycerol Metabolism and PrfA Activity in <i>Listeria monocytogenes</i> . Journal of Bacteriology, 2008, 190, 5412-5430.	2.2	118
31	Interference of Components of the Phosphoenolpyruvate Phosphotransferase System with the Central Virulence Gene Regulator PrfA of Listeria monocytogenes. Journal of Bacteriology, 2007, 189, 473-490.	2.2	88
32	Metabolism and Physiology of Listeria monocytogenes. , 2007, , 63-80.		4
33	Pathogenomics of Listeria spp International Journal of Medical Microbiology, 2007, 297, 541-557.	3.6	84
34	Life of Listeria monocytogenes in the host cells' cytosol. Microbes and Infection, 2007, 9, 1188-1195.	1.9	64
35	Molecular Virulence Determinants of Listeria monocytogenes. Food Additives, 2007, , 111-155.	0.1	6

Genomics of Listeria monocytogenes. , 2006, , 339-366.

#	Article	IF	CITATIONS
37	Complementation of Listeria seeligeri with the plcA-prfA genes from L. monocytogenes activates transcription of seeligerolysin and leads to bacterial escape from the phagosome of infected mammalian cells. FEMS Microbiology Letters, 2006, 146, 303-310.	1.8	16
38	Listeria monocytogenes infection of HeLa cells results in listeriolysinO-mediated transient activation of the Raf-MEK-MAP kinase pathway. FEMS Microbiology Letters, 2006, 148, 189-195.	1.8	27
39	Involvement of MAP-kinases and -phosphatases in uptake and intracellular replication of Listeria monocytogenes in J774 macrophage cells. FEMS Microbiology Letters, 2006, 157, 131-136.	1.8	19
40	Listeria monocytogenes-infected human umbilical vein endothelial cells: internalin-independent invasion, intracellular growth, movement, and host cell responses. FEMS Microbiology Letters, 2006, 157, 163-170.	1.8	39
41	Whole-Genome Sequence of Listeria welshimeri Reveals Common Steps in Genome Reduction with Listeria innocua as Compared to Listeria monocytogenes. Journal of Bacteriology, 2006, 188, 7405-7415.	2.2	89
42	Species-Specific Differences in the Activity of PrfA,the Key Regulator of Listerial VirulenceGenes. Journal of Bacteriology, 2006, 188, 7941-7956.	2.2	20
43	Comparison of Different Live Vaccine Strategies In Vivo for Delivery of Protein Antigen or Antigen-Encoding DNA and mRNA by Virulence-Attenuated Listeria monocytogenes. Infection and Immunity, 2006, 74, 3946-3957.	2.2	41
44	Identification of Listeria monocytogenes Genes Contributing to Intracellular Replication by Expression Profiling and Mutant Screening. Journal of Bacteriology, 2006, 188, 556-568.	2.2	286
45	13C isotopologue perturbation studies ofListeria monocytogenescarbon metabolism and its modulation by the virulence regulator PrfA. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2040-2045.	7.1	89
46	Bacterial delivery of functional messenger RNA to mammalian cells. Cellular Microbiology, 2005, 7, 709-724.	2.1	42
47	Supportive and inhibitory elements of a putative PrfA-dependent promoter in Listeria monocytogenes. Molecular Microbiology, 2005, 55, 986-997.	2.5	6
48	Evolutionary history of the genus Listeria and its virulence genes. Systematic and Applied Microbiology, 2005, 28, 1-18.	2.8	116
49	SigB-Dependent In Vitro Transcription of prfA and Some Newly Identified Genes of Listeria monocytogenes Whose Expression Is Affected by PrfA In Vivo. Journal of Bacteriology, 2005, 187, 800-804.	2.2	72
50	Enhanced Synthesis of Internalin A in aro Mutants of Listeria monocytogenes Indicates Posttranscriptional Control of the inIAB mRNA. Journal of Bacteriology, 2005, 187, 2836-2845.	2.2	37
51	Growth, Virulence, and Immunogenicity of Listeria monocytogenes aro Mutants. Infection and Immunity, 2004, 72, 5622-5629.	2.2	89
52	Inefficient Replication ofListeria innocuain the Cytosol of Mammalian Cells. Journal of Infectious Diseases, 2004, 189, 393-401.	4.0	38
53	In vitro transcription of the Listeria monocytogenes virulence genes inIC and mpl reveals overlapping PrfA-dependent and -independent promoters that are differentially activated by GTP. Molecular Microbiology, 2004, 52, 39-52.	2.5	29
54	New Listeria monocytogenes prfA* mutants, transcriptional properties of PrfA* proteins and structure-function of the virulence regulator PrfA. Molecular Microbiology, 2004, 52, 1553-1565.	2.5	66

#	Article	IF	CITATIONS
55	Bacteria as DNA vaccine carriers for genetic immunization. International Journal of Medical Microbiology, 2004, 294, 319-335.	3.6	97
56	Antibodies Present in Normal Human Serum Inhibit Invasion of Human Brain Microvascular Endothelial Cells by Listeria monocytogenes. Infection and Immunity, 2003, 71, 95-100.	2.2	20
57	Deletion of the Gene Encoding p60 in <i>Listeria monocytogenes</i> Leads to Abnormal Cell Division and Loss of Actin-Based Motility. Infection and Immunity, 2003, 71, 3473-3484.	2.2	121
58	Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 431-436.	7.1	232
59	InIA- but not InIB-mediated internalization ofListeria monocytogenesby non-phagocytic mammalian cells needs the support of other internalins. Molecular Microbiology, 2002, 43, 557-570.	2.5	77
60	Recombinant attenuated bacteria for the delivery of subunit vaccines. Vaccine, 2001, 19, 2621-2628.	3.8	59
61	Pathogenicity islands and virulence evolution in Listeria. Microbes and Infection, 2001, 3, 571-584.	1.9	207
62	<i>Listeria</i> Pathogenesis and Molecular Virulence Determinants. Clinical Microbiology Reviews, 2001, 14, 584-640.	13.6	1,892
63	LaXp180, a mammalian ActA-binding protein, identified with the yeast two-hybrid system, co-localizes with intracellular Listeria monocytogenes. Cellular Microbiology, 2000, 2, 101-114.	2.1	30
64	PrfA mediates specific binding of RNA polymerase of Listeria monocytogenes to PrfA-dependent virulence gene promoters resulting in a transcriptionally active complex. Molecular Microbiology, 2000, 36, 487-497.	2.5	29
65	Dangerous signals from E. coli toxin. Nature Medicine, 2000, 6, 741-742.	30.7	3
66	Secretion of different listeriolysin cognates by recombinant attenuated Salmonella typhimurium: superior efficacy of haemolytic over non-haemolytic constructs after oral vaccination. Microbes and Infection, 2000, 2, 1799-1806.	1.9	20
67	Interaction ofListeria monocytogeneswith the intestinal epithelium. FEMS Microbiology Letters, 2000, 190, 323-328.	1.8	38
68	Listeria monocytogenes -Infected Human Dendritic Cells: Uptake and Host Cell Response. Infection and Immunity, 2000, 68, 3680-3688.	2.2	95
69	Interaction of Listeria monocytogenes with Human Brain Microvascular Endothelial Cells: an Electron Microscopic Study. Infection and Immunity, 2000, 68, 3275-3279.	2.2	40
70	Bacterial replication in the host cell cytosol. Current Opinion in Microbiology, 2000, 3, 49-53.	5.1	69
71	Internalization of Listeria monocytogenes by Nonprofessional and Professional Phagocytes. Sub-Cellular Biochemistry, 2000, 33, 411-436.	2.4	13
72	Interaction of Listeria monocytogenes with the intestinal epithelium. FEMS Microbiology Letters, 2000, 190, 323-328.	1.8	1

#	Article	IF	CITATIONS
73	Analysis of the SlyA-controlled expression, subcellular localization and pore-forming activity of a 34 kDa haemolysin (ClyA) from Escherichia coli K-12. Molecular Microbiology, 1999, 31, 557-567.	2.5	100
74	Host Cell Signal Transduction during Listeria monocytogenes Infection. Archives of Biochemistry and Biophysics, 1999, 372, 166-172.	3.0	14
75	Molekulare Mechanismen der Pathogenitävon Bakterien. , 1999, , 233-298.		0
76	Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nature Biotechnology, 1998, 16, 181-185.	17.5	238
77	Differential interaction of the transcription factor PrfA and the PrfAâ€activating factor (Paf) ofListeria monocytogeneswith target sequences. Molecular Microbiology, 1998, 27, 915-928.	2.5	49
78	A novel PrfA-regulated chromosomal locus, which is specific forListeria ivanovii, encodes two small, secreted internalins and contributes to virulence in mice. Molecular Microbiology, 1998, 30, 405-417.	2.5	43
79	Host cell signalling during Listeria monocytogenes infection. Trends in Microbiology, 1998, 6, 11-15.	7.7	28
80	Interaction of <i>Listeria monocytogenes</i> with Human Brain Microvascular Endothelial Cells: InlB-Dependent Invasion, Long-Term Intracellular Growth, and Spread from Macrophages to Endothelial Cells. Infection and Immunity, 1998, 66, 5260-5267.	2.2	187
81	Functional Similarities between the <i>Listeria monocytogenes</i> Virulence Regulator PrfA and Cyclic AMP Receptor Protein: the PrfA* (Gly145Ser) Mutation Increases Binding Affinity for Target DNA. Journal of Bacteriology, 1998, 180, 6655-6660.	2.2	75
82	Cytolysins and the intracellular life of bacteria. Trends in Microbiology, 1997, 5, 86-88.	7.7	27
83	Responses by murine macrophages infected with Listeria monocytogenes crucial for the development of immunity to this pathogen. Immunological Reviews, 1997, 158, 57-93.	6.0	15
84	Listeria monocytogenes infection of HeLa cells results in listeriolysinO-mediated transient activation of the Raf-MEK-MAP kinase pathway. FEMS Microbiology Letters, 1997, 148, 189-195.	1.8	1
85	Development of antigen-delivery systems, based on the Escherichia coli hemolysin secretion pathway. Gene, 1996, 179, 133-140.	2.2	78
86	Protein p60 Participates in Intestinal Host Invasion by Listeria monocytogenes. Zentralblatt Fur Bakteriologie: International Journal of Medical Microbiology, 1996, 284, 263-272.	0.5	22
87	A new PrfA-regulated gene ofListeria monocytogenesencoding a small, secreted protein which belongs to the family of internalins. Molecular Microbiology, 1996, 21, 823-837.	2.5	170
88	Specific binding of the Listeria monocytogenes transcriptional regulator PrfA to target sequences requires additional factor(s) and is influenced by iron. Molecular Microbiology, 1996, 22, 643-653.	2.5	102
89	Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Molecular Microbiology, 1996, 21, 479-489.	2.5	142
90	Differential regulation of the virulence genes of Listeria monocytogenes by the transcriptional activator PrfA. Molecular Microbiology, 1996, 20, 1189-1198.	2.5	71

#	Article	IF	CITATIONS
91	Control of Listeria Monocytogenes Virulence by the Transcriptional Regulator PrfA. Medical Intelligence Unit, 1995, , 129-142.	0.2	26
92	Transcriptional regulation of prfA and PrfA-regulated virulence genes in Listeria monocytogenes. Molecular Microbiology, 1994, 11, 1141-1150.	2.5	121
93	The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp-Fnr family of transcription regulators. Molecular Microbiology, 1994, 13, 141-151.	2.5	98
94	Surface-associated, PrfA-regulated proteins of Listeria monocytogenes synthesized under stress conditions. Molecular Microbiology, 1993, 8, 219-227.	2.5	113
95	Microbial Strategies to Prevent Oxygen-Dependent Killing by Phagocytes. Free Radical Research Communications, 1992, 16, 137-157.	1.8	59
96	A gene encoding a Superoxide dismutase of the facultative intracellular bacterium Listeria monocytogenes. Gene, 1992, 118, 121-125.	2.2	53
97	Cloning of a superoxide dismutase gene from Listeria ivanovii by functional complementation in Escherichia coli and characterization of the gene product. Molecular Genetics and Genomics, 1992, 231, 313-322.	2.4	17
98	Molecular determinants of Listeria monocytogenes pathogenesis. Infection and Immunity, 1992, 60, 1263-1267.	2.2	589
99	Gene disruption by plasmid integration in Listeria monocytogenes: Insertional inactivation of the listeriolysin determinant lisA. Molecular Genetics and Genomics, 1991, 228, 177-182.	2.4	69
100	Cloning and Expression inEscherichia Coliof a Gene Encoding Superoxide Dismutase from Listeria Ivanovii. Free Radical Research Communications, 1991, 12, 371-377.	1.8	3
101	Characterization of a Listeria monocytogenes-specific protein capable of inducing delayed hypersensitivity in Listeria-immune mice. Molecular Microbiology, 1990, 4, 1091-1099.	2.5	40
102	The gene coding for protein p60 of Listeria monocytogenes and its use as a specific probe for Listeria monocytogenes. Infection and Immunity, 1990, 58, 1943-1950.	2.2	176
103	Production, purification and characterization of hemolysins from Listeria ivanovii and Listeria monocytogenes Sv4b. FEMS Microbiology Letters, 1989, 57, 197-202.	1.8	52
104	Production, purification and characterization of hemolysins from Listeria ivanovii and Listeria monocytogenes Sv4b. FEMS Microbiology Letters, 1989, 57, 197-202.	1.8	2
105	Virulence Gene Clusters and Putative Pathogenicity Islands in Listeriae. , 0, , 219-232.		11
106	Metabolic Adaptations of Intracellullar Bacterial Pathogens and their Mammalian Host Cells during Infection ("Pathometabolismâ€). , 0, , 27-58.		38
107	Regulation of Virulence Genes in Pathogenic <i>Listeria</i> spp , 0, , 634-645.		0
108	Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	18