Kyusung Shim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9503741/publications.pdf

Version: 2024-02-01

1477746 1473754 23 145 9 6 citations h-index g-index papers 23 23 23 98 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Enhancing PHY-Security of FD-Enabled NOMA Systems Using Jamming and User Selection: Performance Analysis and DNN Evaluation. IEEE Internet of Things Journal, 2021, 8, 17476-17494.	5.5	22
2	An Optimal QoS Multicast Routing Protocol in IoT Enabling Cognitive Radio MANETs: A Deep Q-Learning Approach., 2021,,.		2
3	A Deep-Neural-Network-Based Relay Selection Scheme in Wireless-Powered Cognitive IoT Networks. IEEE Internet of Things Journal, 2021, 8, 7423-7436.	5. 5	32
4	DQR: A Deep Reinforcement Learning-based QoS Routing Protocol in Cognitive Radio Mobile Ad Hoc Networks. , 2021, , .		5
5	A New Deep Q-Network Design for QoS Multicast Routing in Cognitive Radio MANETs. IEEE Access, 2021, 9, 152841-152856.	2.6	10
6	A Game Theory Based Clustering Protocol to Support Multicast Routing in Cognitive Radio Mobile Ad Hoc Networks. IEEE Access, 2020, 8, 141310-141330.	2.6	13
7	Secrecy Outage Performance and Deep Learning Evaluation of Multihop Energy Harvesting IoT Networks over Nakagami-m Fading Channels. , 2020, , .		1
8	Exploiting Opportunistic Scheduling Schemes and WPT-Based Multi-Hop Transmissions to Improve Physical Layer Security in Wireless Sensor Networks. Sensors, 2019, 19, 5456.	2.1	10
9	Exploiting Opportunistic Scheduling Schemes to Improve Physical-Layer Security in MU-MISO NOMA Systems. IEEE Access, 2019, 7, 180867-180886.	2.6	6
10	A physical layer security-based routing protocol in mobile ad-hoc wireless networks. , 2018, , .		O
11	A physical layer security-based routing protocol in mobile ad-hoc wireless networks. , 2018, , .		3
12	Exploiting Opportunistic Scheduling for Physical-Layer Security in Multitwo User NOMA Networks. Wireless Communications and Mobile Computing, 2018, 2018, 1-12.	0.8	5
13	A Physical Layer Security-Based Transmit Antenna Selection Scheme for NOMA Systems. , 2018, , .		4
14	Improving Physical Layer Security of NOMA Networks by Using Opportunistic Scheduling. , 2018, , .		1
15	User Requirement based Solar Power Generation Safety Evaluation System. Journal of the Institute of Electronics and Information Engineers, 2018, 55, 61-73.	0.0	O
16	Multi-to-One Visible Lighting Communication based IoT System using Rolling Shutter Technique. Journal of the Institute of Electronics and Information Engineers, 2018, 55, 51-60.	0.0	0
17	Performance Analysis of Physical Layer Security of Opportunistic Scheduling in Multiuser Multirelay Cooperative Networks. Sensors, 2017, 17, 377.	2.1	14
18	Outage performance of physical layer security for multi-hop underlay cognitive radio networks with imperfect channel state information., 2016,,.		15

#	Article	IF	CITATIONS
19	The Impact of Hardware Impairments and Imperfect Channel State Information on Physical Layer Security. Journal of the Institute of Electronics and Information Engineers, 2016, 53, 79-86.	0.0	O
20	An Analysis Modeling Architecture for Supporting Physical Layer Security of Wireless Networks under Hardware Impairments. International Journal of Security and Its Applications, 2016, 10, 351-362.	0.5	0
21	EHER: An Energy Harvesting Aware Entropy-Based Routing Protocol in Mobile Ad-Hoc Wireless Sensor Networks. International Journal of Future Generation Communication and Networking, 2016, 9, 273-282.	0.7	0
22	Development of Mobile Cloud Computing Client UI/UX based on Open Source SPICE. Journal of the Institute of Electronics and Information Engineers, 2016, 53, 85-92.	0.0	0
23	LED Communication-based PC-PC Transmission System. Han'gug Inteo'nes Bangsong Tongsin TV Haghoe Nonmunji, 2012, 12, 181-187.	0.1	2