List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9503687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Nearby Evolved Stars Survey II: Constructing a volume-limited sample and first results from the James Clerk Maxwell Telescope. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1091-1110.	4.4	5
2	A Census of Thermally Pulsing AGB Stars in the Andromeda Galaxy and a First Estimate of Their Contribution to the Global Dust Budget. Astrophysical Journal, Supplement Series, 2022, 259, 41.	7.7	6
3	The James Webb Space Telescope Absolute Flux Calibration. I. Program Design and Calibrator Stars. Astronomical Journal, 2022, 163, 267.	4.7	32
4	Infrared variable stars in the compact elliptical galaxy M32. Monthly Notices of the Royal Astronomical Society, 2021, 504, 565-575.	4.4	2
5	AT 2019qyl in NGC 300: Internal Collisions in the Early Outflow from a Very Fast Nova in a Symbiotic Binary* â€. Astrophysical Journal, 2021, 920, 127.	4.5	4
6	Constraining the thermally pulsing asymptotic giant branch phase with resolved stellar populations in the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3283-3301.	4.4	75
7	Dusty Stellar Birth and Death in the Metal-poor Galaxy NGC 6822. Astrophysical Journal, 2020, 892, 91.	4.5	6
8	MCR-TRGB: A Multiwavelength-covariant, Robust Tip of the Red Giant Branch Measurement Method*. Astrophysical Journal, 2020, 898, 57.	4.5	14
9	PHAT XX. AGB Stars and Other Cool Giants in M31 Star Clusters. Astrophysical Journal, 2020, 901, 19.	4.5	7
10	Using the Tip of the Red Giant Branch As a Distance Indicator in the Near Infrared. Astrophysical Journal, 2019, 880, 63.	4.5	22
11	Asymptotic Giant Branch Stars in the Nearby Dwarf Galaxy Leo P*. Astrophysical Journal, 2019, 884, 152.	4.5	4
12	An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). V. The Period–Luminosity Relation for Dusty Metal-poor AGB Stars. Astrophysical Journal, 2019, 877, 49.	4.5	23
13	SPIRITS Catalog of Infrared Variables: Identification of Extremely Luminous Long Period Variables. Astrophysical Journal, 2019, 877, 110.	4.5	15
14	Constraining the thermally pulsing asymptotic giant branch phase with resolved stellar populations in the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5666-5692.	4.4	122
15	Circumstellar CO in metal-poor stellar winds: the highly irradiated globular cluster star 47 Tucanae V3. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 484, L85-L89.	3.3	7
16	Identifying Young Stellar Objects in the Outer Galaxy: lÂ=Â224° Region in Canis Major. Astrophysical Journal, Supplement Series, 2019, 240, 26.	7.7	17
17	A Dramatic Decrease in Carbon Star Formation in M31. Astrophysical Journal, 2019, 879, 109.	4.5	20
18	Near-infrared Stellar Populations in the Metal-poor, Dwarf Irregular Galaxies Sextans A and Leo A. Astrophysical Journal, 2018, 854, 117.	4.5	14

#	Article	IF	CITATIONS
19	Infrared light curves of dusty & metal-poor AGB stars. Proceedings of the International Astronomical Union, 2018, 14, 406-408.	0.0	0
20	Infrared Studies of the Variability and Mass Loss of Some of the Dustiest Asymptotic Giant Branch Stars in the Magellanic Clouds. Proceedings of the International Astronomical Union, 2018, 14, 498-499.	0.0	0
21	The Lifecycle of Dust and Metals in Low-Abundance Galaxies. Proceedings of the International Astronomical Union, 2018, 14, 201-203.	0.0	0
22	Near-Infrared Stellar Populations in the metal-poor, Dwarf irregular Galaxies Sextans A and Leo A. Proceedings of the International Astronomical Union, 2018, 14, 429-430.	0.0	0
23	The Impact of AGB Stars on Galaxies. Proceedings of the International Astronomical Union, 2018, 14, 321-329.	0.0	0
24	An Optical and Infrared Time-domain Study of the Supergiant Fast X-Ray Transient Candidate IC 10 X-2. Astrophysical Journal, 2018, 856, 38.	4.5	1
25	Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI. Astrophysical Journal, 2017, 841, 15.	4.5	19
26	The SAGE-Spec Spitzer Legacy program: the life-cycle of dust and gas in the Large Magellanic Cloud. Point source classification – III. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3250-3282.	4.4	47
27	SPIRITS: Uncovering Unusual Infrared Transients with Spitzer. Astrophysical Journal, 2017, 839, 88.	4.5	75
28	An Infrared Census of DUST in Nearby Galaxies with Spitzer (DUSTiNGS). IV. Discovery of High-redshift AGB Analogs [*] . Astrophysical Journal, 2017, 851, 152.	4.5	29
29	DUSTINGS. III. DISTRIBUTION OF INTERMEDIATE-AGE AND OLD STELLAR POPULATIONS IN DISKS AND OUTER EXTREMITIES OF DWARF GALAXIES. Astrophysical Journal, 2017, 834, 78.	4.5	31
30	THE INFRARED SPECTRAL PROPERTIES OF MAGELLANIC CARBON STARS. Astrophysical Journal, 2016, 826, 44.	4.5	36
31	THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XV. THE BEAST: BAYESIAN EXTINCTION AND STELLAR TOOL*. Astrophysical Journal, 2016, 826, 104.	4.5	36
32	The evolved-star dust budget of the Small Magellanic Cloud: the critical role of a few key players. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2814-2838.	4.4	52
33	CARBON STARS IN THE SATELLITES AND HALO OF M31. Astrophysical Journal, 2016, 828, 15.	4.5	10
34	IDENTIFICATION OF A CLASS OF LOW-MASS ASYMPTOTIC GIANT BRANCH STARS STRUGGLING TO BECOME CARBON STARS IN THE MAGELLANIC CLOUDS. Astrophysical Journal, 2015, 810, 116.	4.5	31
35	THE DUSTIEST POST-MAIN SEQUENCE STARS IN THE MAGELLANIC CLOUDS. Astrophysical Journal, 2015, 811, 145.	4.5	20
36	<i>Spitzer</i> infrared spectrograph point source classification in the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3504-3536.	4.4	41

#	Article	IF	CITATIONS
37	Detection of rotational CO emission from the red-supergiants in the Large Magellanic Cloud. Proceedings of the International Astronomical Union, 2015, 11, 459-459.	0.0	0
38	THE INFLUENCE OF SUPERNOVA REMNANTS ON THE INTERSTELLAR MEDIUM IN THE LARGE MAGELLANIC CLOUD SEEN AT 20-600 μm WAVELENGTHS. Astrophysical Journal, 2015, 799, 50.	4.5	59
39	A Spitzer Space Telescope survey of extreme asymptotic giant branch stars in M32. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1584-1596.	4.4	9
40	IS THERE A METALLICITY CEILING TO FORM CARBON STARS?—A NOVEL TECHNIQUE REVEALS A SCARCITY OF C STARS IN THE INNER M31 DISK. Astrophysical Journal, 2013, 774, 83.	4.5	46
41	HUBBLE TARANTULA TREASURY PROJECT: UNRAVELING TARANTULA'S WEB. I. OBSERVATIONAL OVERVIEW AND FIRST RESULTS. Astronomical Journal, 2013, 146, 53.	4.7	47
42	THE CONTRIBUTION OF THERMALLY-PULSING ASYMPTOTIC GIANT BRANCH AND RED SUPERGIANT STARS TO THE LUMINOSITIES OF THE MAGELLANIC CLOUDS AT 1-24 μm. Astrophysical Journal, 2013, 764, 30.	4.5	20
43	THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. Astrophysical Journal, Supplement Series, 2012, 200, 18.	7.7	269
44	RESOLVED NEAR-INFRARED STELLAR POPULATIONS IN NEARBY GALAXIES. Astrophysical Journal, Supplement Series, 2012, 198, 6.	7.7	62
45	THE DUST BUDGET OF THE SMALL MAGELLANIC CLOUD: ARE ASYMPTOTIC GIANT BRANCH STARS THE PRIMARY DUST SOURCE AT LOW METALLICITY?. Astrophysical Journal, 2012, 748, 40.	4.5	112
46	The LF of TP-AGB stars in the LMC/SMC. Proceedings of the International Astronomical Union, 2012, 8, 282-285.	0.0	0
47	THE CONTRIBUTION OF TP-AGB AND RHeB STARS TO THE NEAR-IR LUMINOSITY OF LOCAL GALAXIES: IMPLICATIONS FOR STELLAR MASS MEASUREMENTS OF HIGH-REDSHIFT GALAXIES. Astrophysical Journal, 2012, 748, 47.	4.5	76
48	FUNDAMENTAL PARAMETERS, INTEGRATED RED GIANT BRANCH MASS LOSS, AND DUST PRODUCTION IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE. Astrophysical Journal, Supplement Series, 2011, 193, 23.	7.7	55
49	SURVEYING THE AGENTS OF GALAXY EVOLUTION IN THE TIDALLY STRIPPED, LOW METALLICITY SMALL MAGELLANIC CLOUD (SAGE-SMC). I. OVERVIEW. Astronomical Journal, 2011, 142, 102.	4.7	170
50	INFRARED PERIOD-LUMINOSITY RELATIONS OF EVOLVED VARIABLE STARS IN THE LARGE MAGELLANIC CLOUD. Astrophysical Journal, 2010, 723, 1195-1209.	4.5	59
51	Design Overview and Performance of the WIYN1 High Resolution Infrared Camera (WHIRC). Publications of the Astronomical Society of the Pacific, 2010, 122, 451-469.	3.1	27
52	The SAGE-Spec Spitzer Legacy Program: The Life Cycle of Dust and Gas in the Large Magellanic Cloud. Publications of the Astronomical Society of the Pacific, 2010, 122, 683-700.	3.1	78
53	Giants in the globular cluster ω Centauri: dust production, mass-loss and distance. Monthly Notices of the Royal Astronomical Society, 2009, 394, 831-856.	4.4	80
54	THE MASS LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD: EMPIRICAL RELATIONS FOR EXCESS EMISSION AT 8 AND 24 1⁄4m. Astronomical Journal, 2009, 137, 4810-4823.	4.7	91

#	Article	IF	CITATIONS
55	A <i>SPITZER SPACE TELESCOPE</i> ATLAS OF ï‰ CENTAURI: THE STELLAR POPULATION, MASS LOSS, AND THE INTRACLUSTER MEDIUM. Astronomical Journal, 2008, 135, 1395-1411.	4.7	48
56	SpitzerSurvey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy?s Evolution (SAGE). I. Overview and Initial Results. Astronomical Journal, 2006, 132, 2268-2288.	4.7	567
57	The brightest asymptotic giant branch stars in the Leo I dwarf spheroidal galaxy. Monthly Notices of the Royal Astronomical Society, 2002, 335, 923-927.	4.4	28