Vladimir V Popov Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9503673/publications.pdf

Version: 2024-02-01

471509 477307 39 951 17 29 citations h-index g-index papers 39 39 39 955 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomedical Engineering Letters, 2018, 8, 337-344.	4.1	105
2	The effect of powder recycling on the mechanical properties and microstructure of electron beam melted Ti-6Al-4†V specimens. Additive Manufacturing, 2018, 22, 834-843.	3.0	76
3	Powder Bed Fusion Additive Manufacturing Using Critical Raw Materials: A Review. Materials, 2021, 14, 909.	2.9	69
4	Reaction bonding of silicon carbides by Binder Jet 3D-Printing, phenolic resin binder impregnation and capillary liquid silicon infiltration. Ceramics International, 2019, 45, 18023-18029.	4.8	61
5	Selective electron beam melting of Al0.5CrMoNbTa0.5 high entropy alloys using elemental powder blend. Heliyon, 2019, 5, e01188.	3.2	61
6	Powder-bed additive manufacturing for aerospace application: Techniques, metallic and metal/ceramic composite materials and trends. Manufacturing Review, 2019, 6, 5.	1.5	46
7	Industry 4.0 and Digitalisation in Healthcare. Materials, 2022, 15, 2140.	2.9	46
8	Effect of Hot Isostatic Pressure treatment on the Electron-Beam Melted Ti-6Al-4V specimens. Procedia Manufacturing, 2018, 21, 125-132.	1.9	40
9	Prospects of additive manufacturing of rare-earth and non-rare-earth permanent magnets. Procedia Manufacturing, 2018, 21, 100-108.	1.9	37
10	Additive manufacturing to veterinary practice: recovery of bony defects after the osteosarcoma resection in canines. Biomedical Engineering Letters, 2019, 9, 97-108.	4.1	37
11	Structure and Thermal Stability of Cu after Severe Plastic Deformation. Defect and Diffusion Forum, 0, 297-301, 1312-1321.	0.4	33
12	Hybrid additive manufacturing of steels and alloys. Manufacturing Review, 2020, 7, 6.	1.5	31
13	Compositionally-tailored steel-based materials manufactured by electron beam melting using blended pre-alloyed powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138587.	5.6	23
14	Microstructural Evolution and Phase Formation in 2nd-Generation Refractory-Based High Entropy Alloys. Materials, 2018, 11, 175.	2.9	21
15	High entropy Al0.5CrMoNbTa0.5 alloy: Additive manufacturing vs. casting vs. CALPHAD approval calculations. Materials Characterization, 2020, 167, 110505.	4.4	20
16	Complex Concentrated Alloys for Substitution of Critical Raw Materials in Applications for Extreme Conditions. Materials, 2021, 14, 1197.	2.9	19
17	Corrosion Resistance of Al–CNT Metal Matrix Composites. Materials, 2021, 14, 3530.	2.9	19
18	Texturing and Phase Evolution in Ti-6Al-4V: Effect of Electron Beam Melting Process, Powder Re-Using, and HIP Treatment. Materials, 2021, 14, 4473.	2.9	19

#	Article	IF	CITATIONS
19	Developing New Materials for Electron Beam Melting: Experiences and Challenges. Materials Science Forum, 0, 941, 2190-2195.	0.3	17
20	Synthesis of Refractory High-Entropy Alloy WTaMoNbV by Powder Bed Fusion Process Using Mixed Elemental Alloying Powder. Materials, 2022, 15, 4043.	2.9	16
21	Production of net-shape Mn-Al permanent magnets by electron beam melting. Additive Manufacturing, 2019, 30, 100787.	3.0	15
22	Prediction of the Phase Composition of High-Entropy Đloys Based on Cr–Nb–Ti–V–Zr Using the Calphad Method. Physics of Metals and Metallography, 2019, 120, 378-386.	1.0	15
23	Effect of SPD Processing on the Strength and Conductivity of AA6061 Alloy. Advanced Engineering Materials, 2019, 21, 1801370.	3 . 5	14
24	In-situ Alloying as a Novel Methodology in Additive Manufacturing., 2020,,.		14
25	Production of Al Metal Matrix Composites Reinforced With Carbon Nanotubes by Two-Stage Melt-Based HPDC-CE Method. Journal of Engineering Materials and Technology, Transactions of the ASME, 2019, 141, .	1.4	13
26	Heat Transfer and Phase Formation through EBM 3D-Printing of Ti-6Al-4V Cylindrical Parts. Defect and Diffusion Forum, 0, 383, 190-195.	0.4	12
27	The titanium 3D-printed flute: New prospects of additive manufacturing for musical wind instruments design. Journal of New Music Research, 2021, 50, 1-17.	0.8	11
28	Effect of the hatching strategies on mechanical properties and microstructure of SEBM manufactured Ti-6Al-4V specimens. Letters on Materials, 2018, 8, 468-472.	0.7	10
29	Compression deformation and fracture behavior of additively manufactured Ti–6Al–4V cellular structures. International Journal of Lightweight Materials and Manufacture, 2022, 5, 126-135.	2.1	10
30	Microstructure and magnetic properties of Mn-Al-C permanent magnets produced by various techniques. Manufacturing Review, 2021, 8, 10.	1.5	9
31	Structure and Magnetic Properties of Heat-Resistant Sm(Co0.796â^'xFe0.177CuxZr0.027)6.63 Permanent Magnets with High Coercivity. Jom, 2019, 71, 559-566.	1.9	8
32	Structure and Properties of Sm – Co – Fe – Cu – Zr Magnets for High-Temperature Applications. Metal Science and Heat Treatment, 2018, 60, 498-503.	0.6	7
33	Toxicological evaluation of MnAl based permanent magnets using different inÂvitro models. Chemosphere, 2021, 263, 128343.	8.2	7
34	Microstructural Features in Multicore Cu–Nb Composites. Materials, 2021, 14, 7033.	2.9	5
35	Effect of additions of phosphorous, boron, and silicon on the structure and magnetic properties of the melt-spun FePd ribbons. Journal of Magnetism and Magnetic Materials, 2019, 481, 212-220.	2.3	3
36	Development of high-coercivity state in melt-spun Fe41Pd41B8Si6P4 ribbons. Rare Metals, 2020, 39, 76-83.	7.1	1

#	Article	IF	CITATIONS
37	Comparative Study on H20 Steel Billets: Additive Manufacturing vs. Powder Metallurgy. Physics of Metals and Metallography, 2021, 122, 515-526.	1.0	1
38	Experimental Investigation of Convective Heat Transfer Between Silicon-Melt and Solidification Front. Silicon, 2020, 12, 621-628.	3.3	0
39	Closest and long-term prospects of 3D-printing for obstetrics and gynecology. , 2021, 20, 76-81.	0.2	0