List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9503641/publications.pdf Version: 2024-02-01

STELLA VOSNIADOLL

#	Article	IF	CITATIONS
1	Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 1992, 24, 535-585.	2.2	1,334
2	Capturing and modeling the process of conceptual change. Learning and Instruction, 1994, 4, 45-69.	3.2	923
3	Theories of Knowledge Restructuring in Development. Review of Educational Research, 1987, 57, 51-67.	7.5	378
4	Similarity, typicality, and categorization. , 1989, , 21-59.		368
5	Designing learning environments to promote conceptual change in science. Learning and Instruction, 2001, 11, 381-419.	3.2	356
6	Mental Models of the Day/Night Cycle. Cognitive Science, 1994, 18, 123-183.	1.7	354
7	The development of students' understanding of the numerical value of fractions. Learning and Instruction, 2004, 14, 503-518.	3.2	258
8	New approaches to instruction: because wisdom can't be told. , 1989, , 470-497.		238
9	From conceptual development to science education: a psychological point of view. International Journal of Science Education, 1998, 20, 1213-1230.	1.9	187
10	Multiple analogies for complex concepts: antidotes for analogy-induced misconception in advanced knowledge acquisition. , 1989, , 498-531.		183
11	Understanding the structure of the set of rational numbers: a conceptual change approach. Learning and Instruction, 2004, 14, 453-467.	3.2	181
12	How Many <i>Decimals</i> Are There Between Two <i>Fractions</i> ? Aspects of Secondary School Students' Understanding of Rational Numbers and Their Notation. Cognition and Instruction, 2010, 28, 181-209.	2.9	157
13	The Cognitive-Situative Divide and the Problem of Conceptual Change. Educational Psychologist, 2007, 42, 55-66.	9.0	152
14	Designing curricula for conceptual restructuring: Lessons from the study of knowledge acquisition in astronomy. Journal of Curriculum Studies, 1991, 23, 219-237.	2.1	131
15	Conceptual Change and Education. Human Development, 2007, 50, 47-54.	2.0	122
16	Mental models of the earth, sun, and moon: Indian children's cosmologies. Cognitive Development, 1996, 11, 491-521.	1.3	117
17	Modes of knowing and ways of reasoning in elementary astronomy. Cognitive Development, 2004, 19, 203-222.	1.3	115
18	Conceptual Change from the Framework Theory Side of the Fence. Science and Education, 2014, 23, 1427-1445	2.7	114

#	Article	IF	CITATIONS
19	Teachers' and Students' Belief Systems About the Self-Regulation of Learning. Educational Psychology Review, 2019, 31, 223-251.	8.4	112
20	On the Nature of NaÃ⁻ve Physics. , 2002, , 61-76.		110
21	Analogical reasoning as a mechanism in knowledge acquisition: a developmental perspective. , 1989, , 413-437.		109
22	Exploring the relationship between physics-related epistemological beliefs and physics understanding. Contemporary Educational Psychology, 2007, 32, 255-281.	2.9	102
23	The representation of fraction magnitudes and the whole number bias reconsidered. Learning and Instruction, 2015, 37, 39-49.	3.2	99
24	Towards a revised cognitive psychology for new advances in learning and instruction. Learning and Instruction, 1996, 6, 95-109.	3.2	84
25	Reconsidering the role of artifacts in reasoning: Children's understanding of the globe as a model of the earth. Learning and Instruction, 2005, 15, 333-351.	3.2	83
26	Reframing the Classical Approach to Conceptual Change: Preconceptions, Misconceptions and Synthetic Models. , 2012, , 119-130.		72
27	Knowledge Acquisition and Conceptual Change. Applied Psychology, 1992, 41, 347-357.	7.1	68
28	The Development of Students' Understanding of Science. Frontiers in Education, 2019, 4, .	2.1	64
29	Similarity and analogical reasoning: a synthesis. , 1989, , 1-18.		60
30	Universal and culture-specific properties of children's mental models of the earth. , 1994, , 412-430.		59
31	Conceptual change in astronomy: Models of the earth and of the day/night cycle in American-Indian children. European Journal of Psychology of Education, 1997, 12, 159-184.	2.6	57
32	Mental Models in Conceptual Development. , 2002, , 353-368.		56
33	What causes children's failures to detect inconsistencies in text? Representation versus comparison difficulties Journal of Educational Psychology, 1988, 80, 27-39.	2.9	50
34	Conceptual Change in Learning and Instruction. , 0, , .		49
35	Explanatory analogies can help children acquire information from expository text Journal of Educational Psychology, 1988, 80, 524-536.	2.9	48
36	Examining cognitive development from a conceptual change point of view: The framework theory approach. European Journal of Developmental Psychology, 2014, 11, 645-661.	1.8	45

#	Article	IF	CITATIONS
37	Pre-service teachers' beliefs about learning and teaching and about the self-regulation of learning: A conceptual change perspective. International Journal of Educational Research, 2020, 99, 101495.	2.2	38
38	What Kinds of Numbers Do Students Assign to Literal Symbols? Aspects of the Transition from Arithmetic to Algebra. Mathematical Thinking and Learning, 2012, 14, 1-27.	1.2	37
39	Teachers' attitudes to and beliefs about web-based Collaborative Learning Environments in the context of an international implementation. Computers and Education, 2005, 45, 295-315.	8.3	33
40	Is it the Earth that turns or the Sun that goes behind the mountains? Students' misconceptions about the day/night cycle after reading a science text. International Journal of Science Education, 2017, 39, 2027-2051.	1.9	30
41	The Recruitment of Shifting and Inhibition in Onâ€line Science and Mathematics Tasks. Cognitive Science, 2018, 42, 1860-1886.	1.7	25
42	Bridging the Gap Between the Dense and the Discrete: The Number Line and the "Rubber Line―Bridging Analogy. Mathematical Thinking and Learning, 2012, 14, 265-284.	1.2	23
43	What can persuasion research tell us about conceptual change that we did not already know?. International Journal of Educational Research, 2001, 35, 731-737.	2.2	21
44	Bridging culture with cognition: a commentary on "culturing conceptions: from first principles― Cultural Studies of Science Education, 2008, 3, 277-282.	1.3	18
45	Beliefs about the self-regulation of learning predict cognitive and metacognitive strategies and academic performance in pre-service teachers. Metacognition and Learning, 2021, 16, 523-554.	2.7	18
46	Bridging Secondary and Higher Education. The Importance of Self-regulated Learning. European Review, 2020, 28, S94-S103.	0.7	17
47	Bridging psychological and educational research on rational number knowledge. Journal of Numerical Cognition, 2018, 4, 84-106.	1.2	17
48	Evaluating the effects of analogy enriched text on the learning of science: The importance of learning indexes. Journal of Research in Science Teaching, 2019, 56, 732-764.	3.3	15
49	From Cognitive Theory to Educational Technology. , 1994, , 11-18.		13
50	Conceptual Change Research and the Teaching of Science. , 2001, , 177-188.		11
51	The development of an instrument to test preâ€service teachers' beliefs consistent and inconsistent with selfâ€regulation theory. British Journal of Educational Psychology, 2020, 90, 1039-1061.	2.9	9
52	Fostering Conceptual Change: The Role of Computer-Based Environments. , 1992, , 149-162.		9
53	'Conceptual Metaphor Meets Conceptual Change': Yes to Embodiment, No to Fragmentation. Human Development, 2009, 52, 198-204.	2.0	7
54	Theory of Mind, Personal Epistemology, and Science Learning: Exploring Common Conceptual Components. Frontiers in Psychology, 2020, 11, 1140.	2.1	7

#	Article	IF	CITATIONS
55	New Learning in Science and Technology. , 2000, , 119-140.		7
56	Drawing inferences from semantically positive and negative implicative predicates. Journal of Psycholinguistic Research, 1982, 11, 77-93.	1.3	6
57	Using Theory of Mind to Promote Conceptual Change in Science. Science and Education, 2014, 23, 1447-1462.	2.7	6
58	Changes in visual/spatial and analytic strategy use in organic chemistry with the development of expertise. Chemistry Education Research and Practice, 2017, 18, 763-773.	2.5	6
59	Conceptual changes for and during working life. International Journal of Educational Research, 2020, 104, 101682.	2.2	6
60	The role of executive function in the construction and employment of scientific and mathematical concepts that require conceptual change learning. Neuroeducation, 2018, 5, 62-72.	0.3	6
61	Modelling the Learner: Lessons from the Study of Knowledge Reorganization in Astronomy. , 1992, , 101-110.		3
62	The Role of Categorical Information in Refutation Texts. Journal of Cognitive Science, 2016, 17, 441-468.	0.2	3
63	Editorial: The Emergence and Development of Scientific Thinking During the Early Years: Basic Processes and Supportive Contexts. Frontiers in Psychology, 2021, 12, 629384.	2.1	2
64	The Development of Knowledge about the Earth and the Day/Night Cycle in Blind and Sighted Children Using Acoustical Rendition of Documents' Visual Elements. Procedia Computer Science, 2015, 65, 484-491.	2.0	1
65	Teachers' beliefs and knowledge. , 2019, , 99-111.		1
66	Collaborative Modelling of Rational Numbers. , 2003, , 103-107.		1
67	Designing an Interactive Tutoring Tool for Improving Mathematical Skills. Communications in Computer and Information Science, 2014, , 106-111.	0.5	1
68	Supporting Conceptual Change with a Game-Like Fraction Tutor. , 2018, , .		0
69	Looking at the development of mathematical knowledge from the perspective of the framework theory approach to conceptual change: Lessons for mathematics education. , 2021, , 95-115.		0