
Abdallah Badou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9503197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9. Hepatology, 2007, 46, 1509-1518.	3.6	220
2	Transforming Growth Factor β (TGF-β)-dependent Inhibition of T Helper Cell 2 (Th2)-induced Autoimmunity by Self–Major Histocompatibility Complex (MHC) Class Il–specific, Regulatory CD4+ T Cell Lines. Journal of Experimental Medicine, 1997, 185, 1769-1775.	4.2	154
3	Tat Protein of Human Immunodeficiency Virus Type 1 Induces Interleukin-10 in Human Peripheral Blood Monocytes: Implication of Protein Kinase C-Dependent Pathway. Journal of Virology, 2000, 74, 10551-10562.	1.5	111
4	T lymphocyte subsets in cancer immunity: Friends or foes. Journal of Leukocyte Biology, 2019, 105, 243-255.	1.5	110
5	Critical role for the regulatory subunits of Cav channels in T lymphocyte function. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15529-15534.	3.3	101
6	A Scaffold Protein, AHNAK1, Is Required for Calcium Signaling during T Cell Activation. Immunity, 2008, 28, 64-74.	6.6	97
7	Immune Checkpoint Inhibitors in Human Glioma Microenvironment. Frontiers in Immunology, 2021, 12, 679425.	2.2	76
8	Emerging Roles of L-Type Voltage-Gated and Other Calcium Channels in T Lymphocytes. Frontiers in Immunology, 2013, 4, 243.	2.2	71
9	HgCl2-induced Interleukin-4 Gene Expression in T Cells Involves a Protein Kinase C-dependent Calcium Influx through L-type Calcium Channels. Journal of Biological Chemistry, 1997, 272, 32411-32418.	1.6	66
10	Defective survival of naive CD8+ T lymphocytes in the absence of the $\hat{1}^23$ regulatory subunit of voltage-gated calcium channels. Nature Immunology, 2009, 10, 1275-1282.	7.0	59
11	Protein kinase Câ€mediated calcium entry dependent upon dihydropyridineâ€sensitive channels: a Tâ€cell receptorâ€coupled signaling pathway involved in interleukin 4 synthesis. FASEB Journal, 2001, 15, 1577-1579.	0.2	51
12	Weak TCR stimulation induces a calcium signal that triggers IL-4 synthesis, stronger TCR stimulation induces MAP kinases that control IFN-γ production. European Journal of Immunology, 2001, 31, 2487-2496.	1.6	48
13	Requirement for AHNAK1-mediated calcium signaling during T lymphocyte cytolysis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9785-9790.	3.3	44
14	Signaling Pathways Triggered by HIV-1 Tat in Human Monocytes to Induce TNF-α. Virology, 2002, 303, 174-180.	1.1	41
15	<i>In Vitro</i> and <i>In Vivo</i> Immunomodulator Activities of <i>Allium sativum</i> L Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-10.	0.5	36
16	Anti-inflammatory potential of Capparis spinosa L. in vivo in mice through inhibition of cell infiltration and cytokine gene expression. BMC Complementary and Alternative Medicine, 2017, 17, 81.	3.7	27
17	Requirement of Voltage-Gated Calcium Channel Â4 Subunit for T Lymphocyte Functions. Science, 2005, 307, 117-121.	6.0	22
18	Capparis Spinosa L. promotes anti-inflammatory response in vitro through the control of cytokine gene expression in human peripheral blood mononuclear cells. BMC Immunology, 2016, 17, 26.	0.9	21

Abdallah Badou

#	Article	IF	CITATIONS
19	The immune checkpoint VISTA exhibits high expression levels in human gliomas and associates with a poor prognosis. Scientific Reports, 2021, 11, 21504.	1.6	21
20	Gold is a T cell polyclonal activator in BN and LEW rats but favors IL-4 expression only in autoimmune prone BN rats. European Journal of Immunology, 2001, 31, 2266-2276.	1.6	19
21	The Promising IgSF11 Immune Checkpoint Is Highly Expressed in Advanced Human Gliomas and Associates to Poor Prognosis. Frontiers in Oncology, 2020, 10, 608609.	1.3	18
22	Activation of CD4 T cells by Raf-independent effectors of Ras. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6003-6008.	3.3	17
23	Prognostic Gene Expression Signature in Patients With Distinct Glioma Grades. Frontiers in Immunology, 2021, 12, 685213.	2.2	15
24	Screening of exon 11 of BRCA1 gene using the high resolution melting approach for diagnosis in Moroccan breast cancer patients. BMC Cancer, 2015, 15, 81.	1.1	14
25	T Cell Receptor Mediated Calcium Entry Requires Alternatively Spliced Cav1.1 Channels. PLoS ONE, 2016, 11, e0147379.	1.1	13
26	Allium sativum L. regulates in vitro IL-17 gene expression in human peripheral blood mononuclear cells. BMC Complementary and Alternative Medicine, 2016, 16, 377.	3.7	13
27	Clinical and Immunological Features of 96 Moroccan Children with SCID Phenotype: Two Decades' Experience. Journal of Clinical Immunology, 2021, 41, 631-638.	2.0	4
28	Omenn syndrome caused by a novel homozygous mutation in recombination activating gene 1. Immunobiology, 2021, 226, 152090.	0.8	4
29	Severe Combined Immunodeficiency Disorder due to a Novel Mutation in Recombination Activation Gene 2: About 2 Cases. Case Reports in Immunology, 2021, 2021, 1-5.	0.2	3
30	Essential role for the beta3 regulatory subunit of Lâ€ŧype calcium channel in the survival and functions of CD8 T cells. FASEB Journal, 2008, 22, 661.16.	0.2	0