
François Lutzoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9503088/publications.pdf Version: 2024-02-01

Ερλη<u>δ</u>δοις Ιμτζοημ

#	Article	IF	CITATIONS
1	Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany, 2004, 91, 1446-1480.	1.7	718
2	A Phylogenetic Estimation of Trophic Transition Networks for Ascomycetous Fungi: Are Lichens Cradles of Symbiotrophic Fungal Diversification?. Systematic Biology, 2009, 58, 283-297.	5.6	321
3	Host and geographic structure of endophytic and endolichenic fungi at a continental scale. American Journal of Botany, 2012, 99, 898-914.	1.7	304
4	A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution, 2014, 79, 132-168.	2.7	248
5	Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Molecular Phylogenetics and Evolution, 2002, 25, 138-156.	2.7	237
6	New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia, 2006, 98, 1088-1103.	1.9	227
7	A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis, 2009, 49, 163-180.	2.3	201
8	Community Analysis Reveals Close Affinities Between Endophytic and Endolichenic Fungi in Mosses and Lichens. Microbial Ecology, 2010, 60, 340-353.	2.8	191
9	Contemporaneous radiations of fungi and plants linked to symbiosis. Nature Communications, 2018, 9, 5451.	12.8	189
10	Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon, 2010, 59, 1735-1753.	0.7	178
11	Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). European Journal of Phycology, 2011, 46, 399-415.	2.0	148
12	Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: A case study of the Lecanoromycetes (Ascomycota). Molecular Phylogenetics and Evolution, 2007, 44, 412-426.	2.7	144
13	New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia, 2006, 98, 1088-1103.	1.9	140
14	Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungusPeltigera. European Journal of Phycology, 2005, 40, 363-378.	2.0	117
15	Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Molecular Phylogenetics and Evolution, 2016, 98, 210-232.	2.7	110
16	The lichen symbiosis re-viewed through the genomes of Cladonia grayi and its algal partner Asterochloris glomerata. BMC Genomics, 2019, 20, 605.	2.8	98
17	Host availability drives distributions of fungal endophytes in the imperilled boreal realm. Nature Ecology and Evolution, 2019, 3, 1430-1437.	7.8	91
18	Generic classification of the Verrucariaceae (Ascomycota) based on molecular and morphological evidence: recent progress and remaining challenges. Taxon, 2009, 58, 184-208.	0.7	88

François Lutzoni

#	Article	IF	CITATIONS
19	A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biology, 2015, 119, 917-928.	2.5	79
20	The adaptive radiation of lichen-forming Teloschistaceae is associated with sunscreening pigments and a bark-to-rock substrate shift. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11600-11605.	7.1	77
21	Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order – Phaeomoniellales. Molecular Phylogenetics and Evolution, 2015, 85, 117-130.	2.7	66
22	Lichens. Current Biology, 2009, 19, R502-R503.	3.9	62
23	Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24682-24688.	7.1	60
24	Assessing population structure and host specialization in lichenized cyanobacteria. New Phytologist, 2013, 198, 557-566.	7.3	57
25	T-BAS: Tree-Based Alignment Selector toolkit for phylogenetic-based placement, alignment downloads and metadata visualization: an example with the Pezizomycotina tree of life. Bioinformatics, 2017, 33, 1160-1168.	4.1	55
26	Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current biological nitrogen fixation estimates. New Phytologist, 2017, 213, 680-689.	7.3	54
27	Lichen-symbiotic cyanobacteria associated with <i>Peltigera</i> have an alternative vanadium-dependent nitrogen fixation system. European Journal of Phycology, 2014, 49, 11-19.	2.0	50
28	Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at a continental scale. Oecologia, 2016, 180, 181-191.	2.0	50
29	Climate and seasonality drive the richness and composition of tropical fungal endophytes at a landscape scale. Communications Biology, 2021, 4, 313.	4.4	45
30	<scp>RNA</scp> â€based analyses reveal fungal communities structured by a senescence gradient in the moss <i>Dicranum scoparium</i> and the presence of putative multiâ€ŧrophic fungi. New Phytologist, 2018, 218, 1597-1611.	7.3	44
31	Compatibility and thigmotropism in the lichen symbiosis: A reappraisal. Symbiosis, 2009, 47, 109-115.	2.3	41
32	Species delimitation at a global scale reveals high species richness with complex biogeography and patterns of symbiont association in <i>Peltigera</i> section <i>Peltigera</i> (lichenized Ascomycota:) Tj ETQq	0 0 00 g BT /	Ovendock 10 T
33	Phylogenetic placement, species delimitation, and cyanobiont identity of endangered aquatic <i>Peltigera</i> species (lichenâ€forming Ascomycota, Lecanoromycetes). American Journal of Botany, 2014, 101, 1141-1156.	1.7	37
34	T-BAS Version 2.1: Tree-Based Alignment Selector Toolkit for Evolutionary Placement of DNA Sequences and Viewing Alignments and Specimen Metadata on Curated and Custom Trees. Microbiology Resource Announcements, 2019, 8, .	0.6	35
35	Is vanadium a biometal for boreal cyanolichens?. New Phytologist, 2014, 202, 765-771.	7.3	34
36	Twenty-five cultures of lichenizing fungi available for experimental studies on symbiotic systems. Symbiosis, 2013, 59, 165-171.	2.3	31

François Lutzoni

#	Article	IF	CITATIONS
37	Conserved genomic collinearity as a source of broadly applicable, fast evolving, markers to resolve species complexes: A case study using the lichen-forming genus Peltigera section Polydactylon. Molecular Phylogenetics and Evolution, 2017, 117, 10-29.	2.7	30
38	Biodiversity assessment of ascomycetes inhabiting Lobariella lichens in Andean cloud forests led to one new family, three new genera and 13 new species of lichenicolous fungi. Plant and Fungal Systematics, 2019, 64, 283-344.	0.5	30
39	Phylogenetic relationships and taxonomy of the <i>Leptogium lichenoides</i> group (Collemataceae,) Tj ETQq1	1 0.78431 0.7	4 rgBT /Over
40	Hypogymnia phylogeny, including Cavernularia, reveals biogeographic structure. Bryologist, 2011, 114, 392.	0.6	27
41	Determination of elemental baseline using peltigeralean lichens from Northeastern Canada (Québec): Initial data collection for long term monitoring of the impact of global climate change on boreal and subarctic area in Canada. Science of the Total Environment, 2015, 533, 1-7.	8.0	26
42	Contrasting Symbiotic Patterns in Two Closely Related Lineages of Trimembered Lichens of the Genus Peltigera. Frontiers in Microbiology, 2018, 9, 2770.	3.5	25
43	Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. New Phytologist, 2022, 233, 1317-1330.	7.3	23
44	Species diversification and phylogenetically constrained symbiont switching generated high modularity in the lichen genus <i>Peltigera</i> . Journal of Ecology, 2019, 107, 1645-1661.	4.0	20
45	New Approach to an Old Problem: Incorporating Signal from Gap-Rich Regions of ITS and rDNA Large Subunit into Phylogenetic Analyses to Resolve the Peltigera canina Species Complex. Mycologia, 2003, 95, 1181.	1.9	19
46	Stable isotope analyses reveal previously unknown trophic mode diversity in the Hymenochaetales. American Journal of Botany, 2018, 105, 1869-1887.	1.7	19
47	Bioclimatic factors at an intrabiome scale are more limiting than cyanobiont availability for the lichenâ€forming genus <i>Peltigera</i> . American Journal of Botany, 2018, 105, 1198-1211.	1.7	19
48	Phylogenetic study of <i>Diploschistes</i> (lichen–forming Ascomycota: Ostropales: Graphidaceae), based on morphological, chemical, and molecular data. Taxon, 2013, 62, 267-280.	0.7	16
49	Turnover of Lecanoroid Mycobionts and Their Trebouxia Photobionts Along an Elevation Gradient in Bolivia Highlights the Role of Environment in Structuring the Lichen Symbiosis. Frontiers in Microbiology, 2021, 12, 774839.	3.5	16
50	Photobiont associations in co-occurring umbilicate lichens with contrasting modes of reproduction in coastal Norway. Lichenologist, 2016, 48, 545-557.	0.8	13
51	Species in section Peltidea (aphthosa group) of the genus Peltigera remain cryptic after molecular phylogenetic revision. Plant and Fungal Systematics, 2018, 63, 45-64.	0.5	12
52	Differential gene expression associated with fungal trophic shifts along the senescence gradient of the moss <i>Dicranum scoparium</i> . Environmental Microbiology, 2019, 21, 2273-2289.	3.8	11
53	Community dynamics of soilâ€borne fungal communities along elevation gradients in neotropical and palaeotropical forests. Molecular Ecology, 2022, 31, 2044-2060.	3.9	11
54	Molecular data favours a monogeneric <i>Peltulaceae</i> (Lichinomycetes). Lichenologist, 2018, 50, 313-327.	0.8	9

#	Article	IF	CITATIONS
55	Exploring syntenic conservation across genomes for phylogenetic studies of organisms subjected to horizontal gene transfers: A case study with Cyanobacteria and cyanolichens. Molecular Phylogenetics and Evolution, 2021, 162, 107100.	2.7	8
56	Phylogenetic structure of specialization: A new approach that integrates partner availability and phylogenetic diversity to quantify biotic specialization in ecological networks. Ecology and Evolution, 2022, 12, e8649.	1.9	6
57	Comparative transcriptomics of fungal endophytes in coâ€culture with their moss host <i>Dicranum scoparium</i> reveals fungal trophic lability and moss unchanged to slightly increased growth rates. New Phytologist, 2022, 234, 1832-1847.	7.3	5
58	Cyanolichen microbiome contains novel viruses that encode genes to promote microbial metabolism. ISME Communications, 2021, 1, .	4.2	3
59	A Liber Amicorum: Irwin Brodo. Lichenologist, 2016, 48, 343-346.	0.8	1