
Michael Rape

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9503049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of a Covalent FEM1B Recruiter for Targeted Protein Degradation Applications. Journal of the American Chemical Society, 2022, 144, 701-708.	6.6	99
2	Co-adaptor driven assembly of a CUL3 E3 ligase complex. Molecular Cell, 2022, 82, 585-597.e11.	4.5	13
3	Quality control of protein complex composition. Molecular Cell, 2022, 82, 1439-1450.	4.5	15
4	Assembly and function of branched ubiquitin chains. Trends in Biochemical Sciences, 2022, 47, 759-771.	3.7	40
5	Workshop-based learning and networking: a scalable model for research capacity strengthening in low- and middle-income countries. Global Health Action, 2022, 15, .	0.7	0
6	Ubiquitin-dependent remodeling of the actin cytoskeleton drives cell fusion. Developmental Cell, 2021, 56, 588-601.e9.	3.1	26
7	Ubiquitinâ€dependent regulation of transcription in development and disease. EMBO Reports, 2021, 22, e51078.	2.0	16
8	An E3 ligase guide to the galaxy of small-molecule-induced protein degradation. Cell Chemical Biology, 2021, 28, 1000-1013.	2.5	55
9	Structural basis and regulation of the reductive stress response. Cell, 2021, 184, 5375-5390.e16.	13.5	58
10	Drugging the "Undruggable―MYCN Oncogenic Transcription Factor: Overcoming Previous Obstacles to Impact Childhood Cancers. Cancer Research, 2021, 81, 1627-1632.	0.4	25
11	Getting Close: Insight into the Structure and Function of K11/K48-Branched Ubiquitin Chains. Structure, 2020, 28, 1-3.	1.6	25
12	A Cellular Mechanism to Detect and Alleviate Reductive Stress. Cell, 2020, 183, 46-61.e21.	13.5	85
13	Structural basis for dimerization quality control. Nature, 2020, 586, 452-456.	13.7	36
14	Gene expression and cell identity controlled by anaphase-promoting complex. Nature, 2020, 579, 136-140.	13.7	69
15	Branching Out: Improved Signaling by Heterotypic Ubiquitin Chains. Trends in Cell Biology, 2019, 29, 704-716.	3.6	114
16	Tug of War in the Xenophagy World. Trends in Cell Biology, 2019, 29, 767-769.	3.6	9
17	Evasion of autophagy mediated by Rickettsia surface protein OmpB is critical for virulence. Nature Microbiology, 2019, 4, 2538-2551.	5.9	60
18	Prospective discovery of small molecule enhancers of an E3 ligase-substrate interaction. Nature Communications, 2019, 10, 1402.	5.8	110

#	Article	IF	CITATIONS
19	Ubiquitylation at the crossroads of development and disease. Nature Reviews Molecular Cell Biology, 2018, 19, 59-70.	16.1	430
20	Dimerization quality control ensures neuronal development and survival. Science, 2018, 362, .	6.0	56
21	Multisite dependency of an E3 ligase controls monoubiquitylation-dependent cell fate decisions. ELife, 2018, 7, .	2.8	26
22	Principles of Ubiquitin-Dependent Signaling. Annual Review of Cell and Developmental Biology, 2018, 34, 137-162.	4.0	225
23	EMI1 switches from being a substrate to an inhibitor of APC/CCDH1 to start the cell cycle. Nature, 2018, 558, 313-317.	13.7	104
24	Unlocking a dark past. ELife, 2018, 7, .	2.8	1
25	USP15 regulates dynamic protein–protein interactions of the spliceosome through deubiquitination of PRP31. Nucleic Acids Research, 2017, 45, gkw1365.	6.5	23
26	Conducting the finale of DNA replication. Genes and Development, 2017, 31, 226-227.	2.7	2
27	Chemoproteomic Screening of Covalent Ligands Reveals UBA5 As a Novel Pancreatic Cancer Target. ACS Chemical Biology, 2017, 12, 899-904.	1.6	84
28	Ubiquitin-Dependent Regulation of Stem Cell Biology. Trends in Cell Biology, 2017, 27, 568-579.	3.6	39
29	Assembly and Function of Heterotypic Ubiquitin Chains in Cell-Cycle and Protein Quality Control. Cell, 2017, 171, 918-933.e20.	13.5	245
30	Powering stem cell decisions with ubiquitin. Cell Death and Differentiation, 2017, 24, 1823-1824.	5.0	2
31	Ubiquitin levels: the next target against gynecological cancers?. Journal of Clinical Investigation, 2017, 127, 4228-4230.	3.9	11
32	The increasing complexity of the ubiquitin code. Nature Cell Biology, 2016, 18, 579-586.	4.6	794
33	Getting a Grip on Microtubules. Cell, 2016, 164, 836-837.	13.5	6
34	Regulation of the CUL3ÂUbiquitin Ligase by a Calcium-Dependent Co-adaptor. Cell, 2016, 167, 525-538.e14.	13.5	110
35	Control of APC/C-dependent ubiquitin chain elongation by reversible phosphorylation. Proceedings of the United States of America, 2016, 113, 1540-1545.	3.3	36
36	Crystal Structure of a Ube2S-Ubiquitin Conjugate. PLoS ONE, 2016, 11, e0147550.	1.1	24

#	Article	lF	CITATIONS
37	MicroRNA-155 Reinforces HIV Latency. Journal of Biological Chemistry, 2015, 290, 13736-13748.	1.6	72
38	Editorial overview: Differentiation and disease. Current Opinion in Cell Biology, 2015, 37, v-vi.	2.6	0
39	Better Safe than Sorry: Interlinked Feedback Loops for Robust Mitophagy. Molecular Cell, 2015, 60, 1-2.	4.5	27
40	Cell-fate determination by ubiquitin-dependent regulation of translation. Nature, 2015, 525, 523-527.	13.7	145
41	Walking the edge. Nature Chemical Biology, 2014, 10, 243-244.	3.9	1
42	Enhanced Protein Degradation by Branched Ubiquitin Chains. Cell, 2014, 157, 910-921.	13.5	383
43	Ubiquitin Chain Elongation Requires E3-Dependent Tracking of the Emerging Conjugate. Molecular Cell, 2014, 56, 232-245.	4.5	66
44	Plant biology informs drug discovery. Nature Reviews Molecular Cell Biology, 2014, 15, 501-501.	16.1	4
45	Microtubule-Dependent Regulation of Mitotic Protein Degradation. Molecular Cell, 2014, 53, 179-192.	4.5	29
46	The Colossus of Ubiquitylation: Decrypting a Cellular Code. Molecular Cell, 2013, 49, 591-600.	4.5	42
47	Dynamic regulation of ubiquitin-dependent cell cycle control. Current Opinion in Cell Biology, 2013, 25, 704-710.	2.6	37
48	Macromolecular juggling by ubiquitylation enzymes. BMC Biology, 2013, 11, 65.	1.7	56
49	Cullin' PLK1 from kinetochores. Nature Cell Biology, 2013, 15, 347-348.	4.6	5
50	Caught in the act. ELife, 2013, 2, e01127.	2.8	0
51	Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control. Journal of Cell Science, 2012, 125, 255-263.	1.2	95
52	Ubiquitin-dependent regulation of COPII coat size and function. Nature, 2012, 482, 495-500.	13.7	292
53	The Ubiquitin Code. Annual Review of Biochemistry, 2012, 81, 203-229.	5.0	2,844
54	Using Linkage-Specific Monoclonal Antibodies to Analyze Cellular Ubiquitylation. Methods in Molecular Biology, 2012, 832, 185-196.	0.4	24

#	Article	IF	CITATIONS
55	Substrate-specific regulation of ubiquitination by the anaphase-promoting complex. Cell Cycle, 2011, 10, 52-56.	1.3	25
56	The Mechanism of Linkage-Specific Ubiquitin Chain Elongation by a Single-Subunit E2. Cell, 2011, 144, 769-781.	13.5	241
57	Regulation of Ubiquitin Chain Initiation to Control the Timing of Substrate Degradation. Molecular Cell, 2011, 42, 744-757.	4.5	77
58	Processive ubiquitin chain formation by the anaphase-promoting complex. Seminars in Cell and Developmental Biology, 2011, 22, 544-550.	2.3	49
59	Ubiquitinâ€specific protease 4 is inhibited by its ubiquitinâ€like domain. EMBO Reports, 2011, 12, 365-372.	2.0	37
60	K11-linked ubiquitin chains as novel regulators of cell division. Trends in Cell Biology, 2011, 21, 656-663.	3.6	144
61	Regulated Degradation of Spindle Assembly Factors by the Anaphase-Promoting Complex. Molecular Cell, 2010, 38, 369-382.	4.5	114
62	K11-Linked Polyubiquitination in Cell Cycle Control Revealed by a K11 Linkage-Specific Antibody. Molecular Cell, 2010, 39, 477-484.	4.5	329
63	The Prp19 complex and the Usp4 ^{Sart3} deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes and Development, 2010, 24, 1434-1447.	2.7	196
64	Assembly of K11-Linked Ubiquitin Chains by the Anaphase-Promoting Complex. Sub-Cellular Biochemistry, 2010, 54, 107-115.	1.0	14
65	Identification of a physiological E2 module for the human anaphase-promoting complex. Proceedings of the United States of America, 2009, 106, 18213-18218.	3.3	259
66	A set of surgical chain saws. EMBO Journal, 2009, 28, 615-616.	3.5	0
67	Building ubiquitin chains: E2 enzymes at work. Nature Reviews Molecular Cell Biology, 2009, 10, 755-764.	16.1	816
68	The Multiple Layers of Ubiquitin-Dependent Cell Cycle Control. Chemical Reviews, 2009, 109, 1537-1548.	23.0	73
69	Preparation of Synchronized Human Cell Extracts to Study Ubiquitination and Degradation. Methods in Molecular Biology, 2009, 545, 301-312.	0.4	16
70	Reverse the curse—the role of deubiquitination in cell cycle control. Current Opinion in Cell Biology, 2008, 20, 156-163.	2.6	90
71	Mechanism of Ubiquitin-Chain Formation by the Human Anaphase-Promoting Complex. Cell, 2008, 133, 653-665.	13.5	457
72	Mechanism of Ubiquitin Chain Formation by the human Anaphaseâ€Promoting Complex. FASEB Journal, 2008, 22, 260.2.	0.2	0

#	Article	IF	CITATIONS
73	Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature, 2007, 446, 876-881.	13.7	333
74	Retinoblastoma protein and anaphase-promoting complex physically interact and functionally cooperate during cell-cycle exit. Nature Cell Biology, 2007, 9, 225-232.	4.6	155
75	Cell Cycle: On-Time Delivery of Plk1 during Cytokinesis. Current Biology, 2007, 17, R506-R508.	1.8	9
76	The Processivity of Multiubiquitination by the APC Determines the Order of Substrate Degradation. Cell, 2006, 124, 89-103.	13.5	256
77	Characterization of a new qQq-FTICR mass spectrometer for post-translational modification analysis and top-down tandem mass spectrometry of whole proteins. Journal of the American Society for Mass Spectrometry, 2005, 16, 1985-1999.	1.2	57
78	Identification of Ubiquitin Ligase Substrates by In Vitro Expression Cloning. Methods in Enzymology, 2005, 399, 404-414.	0.4	23
79	A Series of Ubiquitin Binding Factors Connects CDC48/p97 to Substrate Multiubiquitylation and Proteasomal Targeting. Cell, 2005, 120, 73-84.	13.5	469
80	Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature, 2004, 432, 588-595.	13.7	264
81	Productive RUPture: activation of transcription factors by proteasomal processing. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1695, 209-213.	1.9	55
82	Taking a bite: proteasomal protein processing. Nature Cell Biology, 2002, 4, E113-E116.	4.6	103
83	Role of the ubiquitin-selective CDC48UFD1/NPL4 chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO Journal, 2002, 21, 615-621.	3.5	297
84	Mobilization of Processed, Membrane-Tethered SPT23 Transcription Factor by CDC48UFD1/NPL4, a Ubiquitin-Selective Chaperone. Cell, 2001, 107, 667-677.	13.5	421
85	Membrane-bound transcription factors: regulated release by RIP or RUP. Current Opinion in Cell Biology, 2001, 13, 344-348.	2.6	136
86	Activation of a Membrane-Bound Transcription Factor by Regulated Ubiquitin/Proteasome-Dependent Processing. Cell, 2000, 102, 577-586.	13.5	540
87	Recognition of protein substrates by the prolyl isomerase trigger factor is independent of proline residues 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 277, 723-732.	2.0	45
88	The Rickettsia Surface Protein OmpB is Critical for Virulence and Evasion of Autophagy. SSRN Electronic Journal, 0, , .	0.4	0