
Carlo Chizzolini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9503048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current Concepts on the Pathogenesis of Systemic Sclerosis. Clinical Reviews in Allergy and Immunology, 2023, 64, 262-283.	6.5	45
2	Serum interferon-α levels and IFN type I-stimulated genes score perform equally to assess systemic lupus erythematosus disease activity. Annals of the Rheumatic Diseases, 2022, 81, 901-903.	0.9	11
3	IL-25 participates in keratinocyte-driven dermal matrix turnover and is reduced in systemic sclerosis epidermis. Rheumatology, 2022, 61, 4558-4569.	1.9	5
4	Interleukinâ€1β–Activated Microvascular Endothelial Cells Promote DCâ€SIGN–Positive Alternatively Activated Macrophages as a Mechanism of Skin Fibrosis in Systemic Sclerosis. Arthritis and Rheumatology, 2022, 74, 1013-1026.	5.6	7
5	Integrative Analysis Reveals a Molecular Stratification of Systemic Autoimmune Diseases. Arthritis and Rheumatology, 2021, 73, 1073-1085.	5.6	81
6	Type I Interferons in Systemic Autoimmune Diseases: Distinguishing Between Afferent and Efferent Functions for Precision Medicine and Individualized Treatment. Frontiers in Pharmacology, 2021, 12, 633821.	3.5	21
7	Dysfunctional Keratinocytes Increase Dermal Inflammation in Systemic Sclerosis: Results From Studies Using Tissueâ€Engineered Scleroderma Epidermis. Arthritis and Rheumatology, 2021, 73, 1311-1317.	5.6	15
8	A new molecular classification to drive precision treatment strategies in primary Sjögren's syndrome. Nature Communications, 2021, 12, 3523.	12.8	67
9	TGFβ promotes low IL10-producing ILC2 with profibrotic ability involved in skin fibrosis in systemic sclerosis. Annals of the Rheumatic Diseases, 2021, 80, 1594-1603.	0.9	30
10	Variants Affecting the C-Terminal Tail of UNC93B1 Are Not a Common Risk Factor for Systemic Lupus Erythematosus. Genes, 2021, 12, 1268.	2.4	0
11	Epitope-Specific Anti-C1q Autoantibodies in Systemic Lupus Erythematosus. Frontiers in Immunology, 2021, 12, 761395.	4.8	5
12	Treatment of calcinosis cutis in systemic sclerosis and dermatomyositis: A review of the literature. Journal of the American Academy of Dermatology, 2020, 82, 317-325.	1.2	52
13	IL-17A Dissociates Inflammation from Fibrogenesis in Systemic Sclerosis. Journal of Investigative Dermatology, 2020, 140, 103-112.e8.	0.7	28
14	Anti-CXCL4 Antibody Reactivity Is Present in Systemic Sclerosis (SSc) and Correlates with the SSc Type I Interferon Signature. International Journal of Molecular Sciences, 2020, 21, 5102.	4.1	26
15	Identification of highly active systemic lupus erythematosus by combined type I interferon and neutrophil gene scores vs classical serologic markers. Rheumatology, 2020, 59, 3468-3478.	1.9	18
16	Interplay Between Keratinocytes and Fibroblasts: A Systematic Review Providing a New Angle for Understanding Skin Fibrotic Disorders. Frontiers in Immunology, 2020, 11, 648.	4.8	72
17	Generation of Monoclonal Antibodies Specific for Native LL37 and Citrullinated LL37 That Discriminate the Two LL37 Forms in the Skin and Circulation of Cutaneous/Systemic Lupus Erythematosus and Rheumatoid Arthritis Patients. Antibodies, 2020, 9, 14.	2.5	5
18	CXCL4 assembles DNA into liquid crystalline complexes to amplify TLR9-mediated interferon-α production in systemic sclerosis. Nature Communications, 2019, 10, 1731.	12.8	90

CARLO CHIZZOLINI

#	Article	IF	CITATIONS
19	Anti-C1q Antibodies as Occurring in Systemic Lupus Erythematosus Could Be Induced by an Epstein-Barr Virus-Derived Antigenic Site. Frontiers in Immunology, 2019, 10, 2619.	4.8	22
20	Immune complexes containing serum B-cell activating factor and immunoglobulin G correlate with disease activity in systemic lupus erythematosus. Nephrology Dialysis Transplantation, 2018, 33, 54-64.	0.7	12
21	Is there a role for IL-17 in the pathogenesis of systemic sclerosis?. Immunology Letters, 2018, 195, 61-67.	2.5	50
22	Prevalence and Disease‧pecific Risk Factors for Lower Urinary Tract Symptoms in Systemic Sclerosis: An International Multicenter Study. Arthritis Care and Research, 2018, 70, 1218-1227.	3.4	7
23	Autoantibodies Against Albumin in Patients With Systemic Lupus Erythematosus. Frontiers in Immunology, 2018, 9, 2090.	4.8	16
24	Chagas disease and systemic autoimmune diseases among Bolivian patients in Switzerland. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e170383.	1.6	6
25	Interleukin-6 and Type-I Collagen Production by Systemic Sclerosis Fibroblasts Are Differentially Regulated by Interleukin-17A in the Presence of Transforming Growth Factor-Beta 1. Frontiers in Immunology, 2018, 9, 1865.	4.8	48
26	Serum calcification propensity is independently associated with disease activity in systemic lupus erythematosus. PLoS ONE, 2018, 13, e0188695.	2.5	12
27	Successful treatment of refractory lupus nephritis by the sequential use of rituximab and belimumab. Joint Bone Spine, 2017, 84, 235-236.	1.6	39
28	Basic Mechanisms Linking Inflammation and Fibrosis. Rare Diseases of the Immune System, 2017, , 17-31.	0.1	0
29	Differential impact of systemic lupus erythematosus and rheumatoid arthritis on health-related quality of life. Quality of Life Research, 2017, 26, 1767-1775.	3.1	16
30	Mapping and predicting mortality from systemic sclerosis. Annals of the Rheumatic Diseases, 2017, 76, 1897-1905.	0.9	410
31	Matrix Metalloproteinases (MMPs) and Cytokines in Rheumatology. , 2017, , 123-155.		3
32	Impact of disease activity on health-related quality of life in systemic lupus erythematosus – a cross-sectional analysis of the Swiss Systemic Lupus Erythematosus Cohort Study (SSCS). BMC Immunology, 2017, 18, 17.	2.2	42
33	Inflammation and Immunity. , 2017, , 161-195.		2
34	Keratinocyte-Derived IL-17E Contributes to Inflammation in Psoriasis. Journal of Investigative Dermatology, 2016, 136, 1970-1980.	0.7	73
35	IL-22 capacitates dermal fibroblast responses to TNF in scleroderma. Annals of the Rheumatic Diseases, 2016, 75, 1697-1705.	0.9	48
36	The role of the acquired immune response in systemic sclerosis. Seminars in Immunopathology, 2015, 37, 519-528.	6.1	38

CARLO CHIZZOLINI

#	Article	IF	CITATIONS
37	High IL-17E and Low IL-17C Dermal Expression Identifies a Fibrosis-Specific Motif Common to Morphea and Systemic Sclerosis. PLoS ONE, 2014, 9, e105008.	2.5	39
38	The Swiss Systemic lupus erythematosus Cohort Study (SSCS) – cross-sectional analysis of clinical characteristics and treatments across different medical disciplines in Switzerland. Swiss Medical Weekly, 2014, 144, w13990.	1.6	31
39	Interleukinâ€17A+ Cell Counts Are Increased in Systemic Sclerosis Skin and Their Number Is Inversely Correlated With the Extent of Skin Involvement. Arthritis and Rheumatism, 2013, 65, 1347-1356.	6.7	85
40	Th17 cells favor inflammatory responses while inhibiting type I collagen deposition by dermal fibroblasts: differential effects in healthy and systemic sclerosis fibroblasts. Arthritis Research and Therapy, 2013, 15, R151.	3.5	74
41	Prostaglandin I2analogues enhance already exuberant Th17 cell responses in systemic sclerosis. Annals of the Rheumatic Diseases, 2012, 71, 2044-2050.	0.9	39
42	T cell abnormalities in systemic sclerosis with a focus on Th17 cells. European Cytokine Network, 2012, 23, 128-139.	2.0	45
43	Immunological Mechanisms. , 2012, , 165-189.		0
44	Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease. Arthritis Research and Therapy, 2011, 13, R166.	3.5	148
45	Fibrosis and immune dysregulation in systemic sclerosis. Autoimmunity Reviews, 2011, 10, 276-281.	5.8	130
46	In Vivo Dioxin Favors Interleukin-22 Production by Human CD4+ T Cells in an Aryl Hydrocarbon Receptor (AhR)-Dependent Manner. PLoS ONE, 2011, 6, e18741.	2.5	41
47	Activation of the aryl hydrocarbon receptor reveals distinct requirements for ILâ€22 and ILâ€17 production by human T helper cells. European Journal of Immunology, 2010, 40, 2450-2459.	2.9	166
48	T-cell subsets in scleroderma patients. Expert Review of Dermatology, 2010, 5, 403-415.	0.3	4
49	Prostaglandin E2: igniting the fire. Immunology and Cell Biology, 2009, 87, 510-511.	2.3	37
50	Cytokines in chronic rheumatic diseases: is everything lack of homeostatic balance?. Arthritis Research and Therapy, 2009, 11, 246.	3.5	30
51	Antifibroblast antibodies in systemic sclerosis induce fibroblasts to produce profibrotic chemokines, with partial exploitation of tollâ€like receptor 4. Arthritis and Rheumatism, 2008, 58, 3913-3923.	6.7	90
52	Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. Blood, 2008, 112, 3696-3703.	1.4	212
53	T cells, B cells, and polarized immune response in the pathogenesis of fibrosis and systemic sclerosis. Current Opinion in Rheumatology, 2008, 20, 707-712.	4.3	58
54	Update on pathophysiology of scleroderma with special reference to immunoinflammatory events. Annals of Medicine, 2007, 39, 42-53.	3.8	43

CARLO CHIZZOLINI

#	Article	IF	CITATIONS
55	Presence of CD4+CD8+ doubleâ€positive T cells with very high interleukinâ€4 production potential in lesional skin of patients with systemic sclerosis. Arthritis and Rheumatism, 2007, 56, 3459-3467.	6.7	127
56	Polarized subsets of human T-helper cells induce distinct patterns of chemokine production by normal and systemic sclerosis dermal fibroblasts. Arthritis Research and Therapy, 2006, 8, R10.	3.5	26
57	CD4+ CD8+ double positive (DP) T cells in health and disease. Autoimmunity Reviews, 2004, 3, 215-220.	5.8	161
58	Systemic sclerosis Th2 cells inhibit collagen production by dermal fibroblasts via membrane-associated tumor necrosis factor α. Arthritis and Rheumatism, 2003, 48, 2593-2604.	6.7	98
59	Autoantibodies to fibroblasts induce a proadhesive and proinflammatory fibroblast phenotype in patients with systemic sclerosis. Arthritis and Rheumatism, 2002, 46, 1602-1613.	6.7	137
60	Th2 Cell Membrane Factors in Association with IL-4 Enhance Matrix Metalloproteinase-1 (MMP-1) While Decreasing MMP-9 Production by Granulocyte-Macrophage Colony-Stimulating Factor-Differentiated Human Monocytes. Journal of Immunology, 2000, 164, 5952-5960.	0.8	72
61	Introductory note to: Fibrosis year 2000. Seminars in Immunopathology, 2000, 21, 377-382.	4.0	4
62	T lymphocyte and fibroblast interactions: the case of skin involvement in systemic sclerosis and other examples. Seminars in Immunopathology, 2000, 21, 431-450.	4.0	11
63	T lymphocyte and fibroblast interactions: the case of skin involvement in systemic sclerosis and other examples. Seminars in Immunopathology, 1999, 21, 431-450.	4.0	20
64	CCR5 is characteristic of Th1 lymphocytes. Nature, 1998, 391, 344-345.	27.8	886
65	Inhibition of type I collagen production by dermal fibroblasts upon contact with activated T cells: Different sensitivity to inhibition between systemic sclerosis and control fibroblasts. Arthritis and Rheumatism, 1998, 41, 2039-2047.	6.7	67
66	Human Th1 cells preferentially induce interleukin (IL)-1β while Th2 cells induce IL-1 receptor antagonist production upon cell/cell contact with monocytes. European Journal of Immunology, 1997, 27, 171-177.	2.9	92