Jean-Luc Jannink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9503044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach. PLoS ONE, 2012, 7, e32253.	1.1	1,685
2	Genomic Selection for Crop Improvement. Crop Science, 2009, 49, 1-12.	0.8	1,266
3	Genomic selection in plant breeding: from theory to practice. Briefings in Functional Genomics, 2010, 9, 166-177.	1.3	996
4	Genomic Selection in Wheat Breeding using Genotypingâ€by‣equencing. Plant Genome, 2012, 5, .	1.6	556
5	Plant Breeding with Genomic Selection: Gain per Unit Time and Cost. Crop Science, 2010, 50, 1681-1690.	0.8	547
6	Genomic Selection in Plant Breeding: A Comparison of Models. Crop Science, 2012, 52, 146-160.	0.8	546
7	Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines. PLoS Genetics, 2015, 11, e1004982.	1.5	425
8	Shrinkage Estimation of the Realized Relationship Matrix. G3: Genes, Genomes, Genetics, 2012, 2, 1405-1413.	0.8	420
9	Genomic Selection in Plant Breeding. Advances in Agronomy, 2011, 110, 77-123.	2.4	395
10	Multiple-Trait Genomic Selection Methods Increase Genetic Value Prediction Accuracy. Genetics, 2012, 192, 1513-1522.	1.2	372
11	Factors Affecting Accuracy From Genomic Selection in Populations Derived From Multiple Inbred Lines: A Barley Case Study. Genetics, 2009, 182, 355-364.	1.2	362
12	Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions. Theoretical and Applied Genetics, 2014, 127, 463-480.	1.8	296
13	Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity, 2016, 116, 395-408.	1.2	296
14	Perspectives for Genomic Selection Applications and Research in Plants. Crop Science, 2015, 55, 1-12.	0.8	290
15	Training set optimization under population structure in genomic selection. Theoretical and Applied Genetics, 2015, 128, 145-158.	1.8	284
16	Genomic Selection in Plant Breeding. Methods in Molecular Biology, 2014, 1145, 117-130.	0.4	275
17	Increased Prediction Accuracy in Wheat Breeding Trials Using a Marker × Environment Interaction Genomic Selection Model. G3: Genes, Genomes, Genetics, 2015, 5, 569-582.	0.8	266
18	Genomic Selection Accuracy for Grain Quality Traits in Biparental Wheat Populations. Crop Science, 2011, 51, 2597-2606.	0.8	255

#	Article	IF	CITATIONS
19	Effectiveness of Genomic Prediction of Maize Hybrid Performance in Different Breeding Populations and Environments. G3: Genes, Genomes, Genetics, 2012, 2, 1427-1436.	0.8	242
20	Genomic Prediction in Maize Breeding Populations with Genotyping-by-Sequencing. G3: Genes, Genomes, Genetics, 2013, 3, 1903-1926.	0.8	235
21	Population genetics of genomics-based crop improvement methods. Trends in Genetics, 2011, 27, 98-106.	2.9	230
22	Evaluation of Genomic Prediction Methods for Fusarium Head Blight Resistance in Wheat. Plant Genome, 2012, 5, 51-61.	1.6	220
23	Potential and Optimization of Genomic Selection for Fusarium Head Blight Resistance in Sixâ€Row Barley. Crop Science, 2012, 52, 1609-1621.	0.8	216
24	Accuracy and Training Population Design for Genomic Selection on Quantitative Traits in Elite North American Oats. Plant Genome, 2011, 4, .	1.6	214
25	Genomic Selection Accuracy using Multifamily Prediction Models in a Wheat Breeding Program. Plant Genome, 2011, 4, 65.	1.6	208
26	Genomic Selection Accuracy using Multifamily Prediction Models in a Wheat Breeding Program. Plant Genome, 2011, 4, .	1.6	206
27	Dynamics of long-term genomic selection. Genetics Selection Evolution, 2010, 42, 35.	1.2	193
28	Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity, 2015, 114, 291-299.	1.2	187
29	Genomic Predictability of Interconnected Biparental Maize Populations. Genetics, 2013, 194, 493-503.	1.2	180
30	Imputation of Unordered Markers and the Impact on Genomic Selection Accuracy. G3: Genes, Genomes, Genetics, 2013, 3, 427-439.	0.8	172
31	Using complex plant pedigrees to map valuable genes. Trends in Plant Science, 2001, 6, 337-342.	4.3	147
32	Genomic Selection for Quantitative Adult Plant Stem Rust Resistance in Wheat. Plant Genome, 2014, 7, plantgenome2014.02.0006.	1.6	143
33	High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Research, 2014, 186, 87-96.	1.1	143
34	The emergence of whole genome association scans in barley. Current Opinion in Plant Biology, 2009, 12, 218-222.	3.5	138
35	Multitrait, Random Regression, or Simple Repeatability Model in Highâ€Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield. Plant Genome, 2017, 10, plantgenome2016.11.0111.	1.6	138
36	New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics, 2009, 10, 39.	1.2	135

#	Article	IF	CITATIONS
37	Identification and distribution of the NBS-LRR gene family in the Cassava genome. BMC Genomics, 2015, 16, 360.	1.2	130
38	Impact of Marker Ascertainment Bias on Genomic Selection Accuracy and Estimates of Genetic Diversity. PLoS ONE, 2013, 8, e74612.	1.1	129
39	Genome-Enabled Prediction Models for Yield Related Traits in Chickpea. Frontiers in Plant Science, 2016, 7, 1666.	1.7	127
40	Optimization of genomic selection training populations with a genetic algorithm. Genetics Selection Evolution, 2015, 47, 38.	1.2	123
41	Genomeâ€Wide Association and Prediction Reveals Genetic Architecture of Cassava Mosaic Disease Resistance and Prospects for Rapid Genetic Improvement. Plant Genome, 2016, 9, plantgenome2015.11.0118.	1.6	120
42	Performance of Single Nucleotide Polymorphisms versus Haplotypes for Genome-Wide Association Analysis in Barley. PLoS ONE, 2010, 5, e14079.	1.1	118
43	Mapping Epistatic Quantitative Trait Loci With One-Dimensional Genome Searches. Genetics, 2001, 157, 445-454.	1.2	115
44	Population Structure and Linkage Disequilibrium in U.S. Barley Germplasm: Implications for Association Mapping. Crop Science, 2010, 50, 556-566.	0.8	106
45	The Triticeae Toolbox: Combining Phenotype and Genotype Data to Advance Smallâ€Grains Breeding. Plant Genome, 2016, 9, plantgenome2014.12.0099.	1.6	104
46	Relatedness and Genotype × Environment Interaction Affect Prediction Accuracies in Genomic Selection: A Study in Cassava. Crop Science, 2013, 53, 1312-1325.	0.8	102
47	Prospects for Genomic Selection in Cassava Breeding. Plant Genome, 2017, 10, plantgenome2017.03.0015.	1.6	101
48	The use of unbalanced historical data for genomic selection in an international wheat breeding program. Field Crops Research, 2013, 154, 12-22.	2.3	100
49	Optimal Design of Preliminary Yield Trials with Genomeâ€Wide Markers. Crop Science, 2014, 54, 48-59.	0.8	100
50	Introduction to a Special Issue on Genotype by Environment Interaction. Crop Science, 2016, 56, 2081-2089.	0.8	92
51	Genomic Selection in Plant Breeding: A Comparison of Models. Crop Science, 2012, 52, 146.	0.8	85
52	Genomic, Markerâ€Assisted, and Pedigreeâ€BLUP Selection Methods for βâ€Glucan Concentration in Elite Oat. Crop Science, 2013, 53, 1894-1906.	0.8	84
53	Using mating designs to uncover QTL and the genetic architecture of complex traits. Heredity, 2006, 96, 139-149.	1.2	83
54	Accuracy of Genomic Selection Prediction in Barley Breeding Programs: A Simulation Study Based On the Real Single Nucleotide Polymorphism Data of Barley Breeding Lines. Crop Science, 2011, 51, 1915-1927.	0.8	80

#	Article	IF	CITATIONS
55	Population structure and linkage disequilibrium in oat (Avena sativa L.): implications for genome-wide association studies. Theoretical and Applied Genetics, 2011, 122, 623-632.	1.8	79
56	SNP Discovery and Chromosome Anchoring Provide the First Physically-Anchored Hexaploid Oat Map and Reveal Synteny with Model Species. PLoS ONE, 2013, 8, e58068.	1.1	73
57	Mapping Quantitative Trait Loci in Plant Breeding Populations. Crop Science, 2003, 43, 829-834.	0.8	72
58	High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. Theoretical and Applied Genetics, 2019, 132, 1705-1720.	1.8	70
59	Using Quantitative Trait Loci Results to Discriminate Among Crosses on the Basis of Their Progeny Mean and Variance. Genetics, 2007, 177, 567-576.	1.2	69
60	Genome-wide association mapping and genomic prediction for CBSD resistance in Manihot esculenta. Scientific Reports, 2018, 8, 1549.	1.6	66
61	Identifying Quantitative Trait Locus by Genetic Background Interactions in Association Studies. Genetics, 2007, 176, 553-561.	1.2	65
62	Using Genomic Prediction to Characterize Environments and Optimize Prediction Accuracy in Applied Breeding Data. Crop Science, 2013, 53, 921-933.	0.8	65
63	Genome-wide association study for oat (Avena sativa L.) beta-glucan concentration using germplasm of worldwide origin. Theoretical and Applied Genetics, 2012, 125, 1687-1696.	1.8	63
64	Genomeâ€Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content. Plant Genome, 2017, 10, plantgenome2016.09.0094.	1.6	63
65	Whole-genome prediction of reaction norms to environmental stress in bread wheat (Triticum) Tj ETQq1 1 0.78	4314,rgBT 2.3	/Oyerlock 10
66	Breeding Value of Primary Synthetic Wheat Genotypes for Grain Yield. PLoS ONE, 2016, 11, e0162860.	1.1	61
67	Accuracy of genomic selection to predict maize single-crosses obtained through different mating designs. Theoretical and Applied Genetics, 2018, 131, 1153-1162.	1.8	56
68	Population Genomics Related to Adaptation in Elite Oat Germplasm. Plant Genome, 2016, 9, plantgenome2015.10.0103.	1.6	55
69	Genome-wide association study of grain shape variation among Oryza sativa L. germplasms based on elliptic Fourier analysis. Molecular Breeding, 2010, 25, 203-215.	1.0	54
70	Accuracies of univariate and multivariate genomic prediction models in African cassava. Genetics Selection Evolution, 2017, 49, 88.	1.2	54
71	Mapping Quantitative Trait Loci in Plant Breeding Populations. Crop Science, 2003, 43, 829.	0.8	51
72	Genetic Mapping Using Genotypingâ€byâ€Sequencing in the Clonally Propagated Cassava. Crop Science, 2014, 54, 1384-1396.	0.8	50

#	Article	IF	CITATIONS
73	OUP accepted manuscript. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	50
74	Optimizing Seeding Rates for Winter Cereal Grains and Frost-Seeded Red Clover Intercrops. Agronomy Journal, 2006, 98, 1041-1049.	0.9	49
75	Rapid analyses of dry matter content and carotenoids in fresh cassava roots using a portable visible and near infrared spectrometer (Vis/NIRS). PLoS ONE, 2017, 12, e0188918.	1.1	49
76	Assessing the practical importance of weed evolution: a research agenda. Weed Research, 1997, 37, 237-246.	0.8	48
77	Planting Date Effects on Winter Triticale Dry Matter and Nitrogen Accumulation. Agronomy Journal, 2005, 97, 1333-1341.	0.9	46
78	Factors Affecting the Power of Haplotype Markers in Association Studies. Plant Genome, 2011, 4, 145-153.	1.6	46
79	Bayesian Modeling of Heterogeneous Error and Genotype × Environment Interaction Variances. Crop Science, 2006, 46, 820-833.	0.8	45
80	Assessment of Power and False Discovery Rate in Genomeâ€Wide Association Studies using the BarleyCAP Germplasm. Crop Science, 2011, 51, 52-59.	0.8	45
81	Multivariate Genome-Wide Association Analyses Reveal the Genetic Basis of Seed Fatty Acid Composition in Oat (<i>Avena sativa</i> L.). G3: Genes, Genomes, Genetics, 2019, 9, 2963-2975.	0.8	44
82	Estimating allelic number and identity in state of QTLs in interconnected families. Genetical Research, 2003, 81, 133-144.	0.3	43
83	Selective Phenotyping to Accurately Map Quantitative Trait Loci. Crop Science, 2005, 45, 901-908.	0.8	42
84	Evaluation of Oat Kernel Size Uniformity. Crop Science, 2004, 44, 1178-1186.	0.8	40
85	In Vitro Bile Acid Binding of Flours from Oat Lines Varying in Percentage and Molecular Weight Distribution of β-Glucan. Journal of Agricultural and Food Chemistry, 2005, 53, 8797-8803.	2.4	40
86	Locally Epistatic Genomic Relationship Matrices for Genomic Association and Prediction. Genetics, 2015, 199, 857-871.	1.2	40
87	Molecular Weight Distribution of (1→3)(1→4)â€Î²â€Glucan Affects Pasting Properties of Flour from Oat Lines with High and Typical Amounts of βâ€Glucan. Cereal Chemistry, 2007, 84, 471-479.	1.1	36
88	The Hordeum Toolbox: The Barley Coordinated Agricultural Project Genotype and Phenotype Resource. Plant Genome, 2012, 5, 81-91.	1.6	35
89	Physical and Sensory Characteristics of Extruded Products Made from Two Oat Lines with Different β-Glucan Concentrations. Cereal Chemistry, 2006, 83, 692-699.	1.1	34
90	Marker-Based Estimates Reveal Significant Nonadditive Effects in Clonally Propagated Cassava (<i>Manihot esculenta</i>): Implications for the Prediction of Total Genetic Value and the Selection of Varieties. G3: Genes, Genomes, Genetics, 2016, 6, 3497-3506.	0.8	34

#	Article	IF	CITATIONS
91	Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Molecular Biology, 2022, 109, 195-213.	2.0	33
92	Evaluating Imputation Algorithms for Low-Depth Genotyping-By-Sequencing (GBS) Data. PLoS ONE, 2016, 11, e0160733.	1.1	33
93	Digestion Residues of Typical and High- $\hat{1}^2$ -Glucan Oat Flours Provide Substrates for in Vitro Fermentation. Journal of Agricultural and Food Chemistry, 2007, 55, 5306-5311.	2.4	32
94	In Vitro Bile Acid Binding Activity within Flour Fractions from Oat Lines with Typical and High β-Glucan Amounts. Journal of Agricultural and Food Chemistry, 2006, 54, 5142-5148.	2.4	31
95	A Simple Package to Script and Simulate Breeding Schemes: The Breeding Scheme Language. Crop Science, 2017, 57, 1347-1354.	0.8	29
96	Overview of QTL detection in plants and tests for synergistic epistatic interactions. Genetica, 2009, 136, 225-236.	0.5	28
97	Bayesian multilocus association mapping on ordinal and censored traits and its application to the analysis of genetic variation among Oryza sativa L. germplasms. Theoretical and Applied Genetics, 2009, 118, 865-880.	1.8	28
98	Genomeâ€Wide Association Study of Resistance to Cassava Green Mite Pest and Related Traits in Cassava. Crop Science, 2018, 58, 1907-1918.	0.8	28
99	Historical Introgressions from a Wild Relative of Modern Cassava Improved Important Traits and May Be Under Balancing Selection. Genetics, 2019, 213, 1237-1253.	1.2	27
100	Genomic Prediction in a Large African Maize Population. Crop Science, 2017, 57, 2361-2371.	0.8	25
101	Biomass Production and Nitrogen Accumulation in Pea, Oat, and Vetch Green Manure Mixtures. Agronomy Journal, 1996, 88, 231-240.	0.9	24
102	Optimal sampling of a population to determine QTL location, variance, and allelic number. Theoretical and Applied Genetics, 2004, 108, 1434-1442.	1.8	24
103	Genetic Correlation, Genome-Wide Association and Genomic Prediction of Portable NIRS Predicted Carotenoids in Cassava Roots. Frontiers in Plant Science, 2019, 10, 1570.	1.7	24
104	Population Genetics of Sugar Kelp Throughout the Northeastern United States Using Genome-Wide Markers. Frontiers in Marine Science, 2020, 7, .	1.2	24
105	Title is missing!. Euphytica, 2001, 120, 291-300.	0.6	23
106	Expanding the Pool of PCRâ€Based Markers for Oat. Crop Science, 2005, 45, 2383-2387.	0.8	23
107	Selection for Nutritional Function and Agronomic Performance in Oat. Crop Science, 2007, 47, 2330-2339.	0.8	23
108	Marker Genotype Imputation in a Low-Marker-Density Panel with a High-Marker-Density Reference Panel: Accuracy Evaluation in Barley Breeding Lines. Crop Science, 2010, 50, 1269-1278.	0.8	23

#	Article	IF	CITATIONS
109	Genomeâ€wide Association Study for Betaâ€glucan Concentration in Elite North American Oat. Crop Science, 2013, 53, 542-553.	0.8	23
110	Training Population Optimization for Prediction of Cassava Brown Streak Disease Resistance in West African Clones. G3: Genes, Genomes, Genetics, 2018, 8, 3903-3913.	0.8	23
111	GrainGenes: a data-rich repository for small grains genetics and genomics. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	1.4	22
112	Prediction of β-Glucan Concentration Based on Viscosity Evaluations of Raw Oat Flours from High β-Glucan and Traditional Oat Lines. Cereal Chemistry, 2004, 81, 434-443.	1.1	21
113	Pasting and Thermal Properties of Flours from Oat Lines with High and Typical Amounts of β-Glucan. Cereal Chemistry, 2004, 81, 686-692.	1.1	20
114	Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis. G3: Genes, Genomes, Genetics, 2018, 8, 53-62.	0.8	20
115	Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment. Communications Biology, 2021, 4, 944.	2.0	20
116	Multi-omics prediction of oat agronomic and seed nutritional traits across environments and in distantly related populations. Theoretical and Applied Genetics, 2021, 134, 4043-4054.	1.8	20
117	On the Metropolis-Hastings Acceptance Probability to Add or Drop a Quantitative Trait Locus in Markov Chain Monte Carlo-Based Bayesian Analyses. Genetics, 2004, 166, 641-643.	1.2	19
118	Genetic Variation and Trait Correlations in an East African Cassava Breeding Population for Genomic Selection. Crop Science, 2019, 59, 460-473.	0.8	19
119	Heritable temporal gene expression patterns correlate with metabolomic seed content in developing hexaploid oat seed. Plant Biotechnology Journal, 2020, 18, 1211-1222.	4.1	19
120	solGS: a web-based tool for genomic selection. BMC Bioinformatics, 2014, 15, 398.	1.2	18
121	Genomic Prediction using Phenotypes from Pedigreed Lines with No Marker Data. Crop Science, 2016, 56, 957-964.	0.8	18
122	Locally epistatic models for genome-wide prediction and association by importance sampling. Genetics Selection Evolution, 2017, 49, 74.	1.2	18
123	A framework for genomics-informed ecophysiological modeling in plants. Journal of Experimental Botany, 2019, 70, 2561-2574.	2.4	18
124	Association mapping in common bean revealed regions associated with Anthracnose and Angular Leaf Spot resistance. Scientia Agricola, 2019, 76, 321-327.	0.6	18
125	Genome wide association study of 5 agronomic traits in olive (Olea europaea L.). Scientific Reports, 2019, 9, 18764.	1.6	18
126	Influence of Genotype and Environment on Wheat Grain Fructan Content. Crop Science, 2019, 59, 190-198.	0.8	18

8

Jean-Luc Jannink

#	Article	IF	CITATIONS
127	Wheat Fructans: A Potential Breeding Target for Nutritionally Improved, Climateâ€Resilient Varieties. Crop Science, 2017, 57, 1624-1640.	0.8	17
128	Translating insights from the seed metabolome into improved prediction for lipid-composition traits in oat (<i>Avena sativa</i> L.). Genetics, 2021, 217, .	1.2	17
129	Breedbase: a digital ecosystem for modern plant breeding. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	17
130	A Low Resolution Epistasis Mapping Approach To Identify Chromosome Arm Interactions in Allohexaploid Wheat. G3: Genes, Genomes, Genetics, 2019, 9, 675-684.	0.8	16
131	Responses to Selection for Partial Resistance to Crown Rust in Oat. Crop Science, 2006, 46, 1260-1265.	0.8	15
132	Recurrent genomic selection for wheat grain fructans. Crop Science, 2020, 60, 1499-1512.	0.8	15
133	Improving root characterisation for genomic prediction in cassava. Scientific Reports, 2020, 10, 8003.	1.6	15
134	An algorithm for deciding the number of clusters and validation using simulated data with application to exploring crop population structure. Annals of Applied Statistics, 2013, 7, .	0.5	14
135	Improving Genomic Prediction for Seed Quality Traits in Oat (Avena sativa L.) Using Trait-Specific Relationship Matrices. Frontiers in Genetics, 2021, 12, 643733.	1.1	14
136	Exploring genotype by environment interaction on cassava yield and yield related traits using classical statistical methods. PLoS ONE, 2022, 17, e0268189.	1.1	14
137	QTLÂ×Âgenetic background interaction: predicting inbred progeny value. Euphytica, 2008, 161, 61-69.	0.6	13
138	An alternative covariance estimator to investigate genetic heterogeneity in populations. Genetics Selection Evolution, 2015, 47, 93.	1.2	13
139	Comparative analysis of morphometric traits of farmed sugar kelp and skinny kelp, <i>Saccharina</i> spp., strains from the Northwest Atlantic. Journal of the World Aquaculture Society, 2021, 52, 1059-1068.	1.2	13
140	Genomic mating in outbred species: predicting cross usefulness with additive and total genetic covariance matrices. Genetics, 2021, 219, .	1.2	13
141	Comparison of Transcript Profiles in Wildâ€Type and o2 Maize Endosperm in Different Genetic Backgrounds. Crop Science, 2007, 47, S-45.	0.8	12
142	Impact of Mislabeling on Genomic Selection in Cassava Breeding. Crop Science, 2018, 58, 1470-1480.	0.8	12
143	Homeologous Epistasis in Wheat: The Search for an Immortal Hybrid. Genetics, 2019, 211, 1105-1122.	1.2	12
144	Genome-wide association mapping and genomic prediction of yield-related traits and starch pasting properties in cassava. Theoretical and Applied Genetics, 2022, 135, 145-171.	1.8	12

#	Article	IF	CITATIONS
145	Planting Date Effects on Winter Triticale Grain Yield and Yield Components. Crop Science, 2006, 46, 1218-1224.	0.8	11
146	Impact of Dry Solids and Bile Acid Concentrations on Bile Acid Binding Capacity of Extruded Oat Cereals. Journal of Agricultural and Food Chemistry, 2008, 56, 8672-8679.	2.4	11
147	Resistance to Multiple Temperate and Tropical Stem and Sheath Diseases of Rice. Plant Genome, 2018, 11, 170029.	1.6	11
148	RNA polymerase mapping in plants identifies intergenic regulatory elements enriched in causal variants. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	11
149	Textural and Bile Acidâ€Binding Properties of Muffins Impacted by Oat βâ€Glucan with Different Molecular Weights. Cereal Chemistry, 2011, 88, 564-569.	1.1	10
150	A statistical framework for detecting mislabeled and contaminated samples using shallow-depth sequence data. BMC Bioinformatics, 2018, 19, 478.	1.2	10
151	Regional Heritability Mapping Provides Insights into Dry Matter Content in African White and Yellow Cassava Populations. Plant Genome, 2018, 11, 170050.	1.6	10
152	Marker Imputation in Barley Association Studies. Plant Genome, 2009, 2, .	1.6	10
153	Prediction of Subgenome Additive and Interaction Effects in Allohexaploid Wheat. G3: Genes, Genomes, Genetics, 2019, 9, 685-698.	0.8	9
154	Genomic prediction and quantitative trait locus discovery in a cassava training population constructed from multiple breeding stages. Crop Science, 2020, 60, 896-913.	0.8	9
155	Selection for seed size has uneven effects on specialized metabolite abundance in oat (<i>Avena) Tj ETQq1 1 0.7</i>	784314 rg 0.8	BT JOverlock
156	Multi-Species Genomics-Enabled Selection for Improving Agroecosystems Across Space and Time. Frontiers in Plant Science, 2021, 12, 665349.	1.7	8
157	Generalizable approaches for genomic prediction of metabolites in plants. Plant Genome, 2022, 15, e20205.	1.6	8
158	Size Distributions of Different Orders of Kernels within the Oat Spikelet. Crop Science, 2008, 48, 298-304.	0.8	7
159	A Low ost Automated System for Highâ€Throughput Phenotyping of Single Oat Seeds. The Plant Phenome Journal, 2018, 1, 1-13.	1.0	7
160	Development of the Wheat Practical Haplotype Graph database as a resource for genotyping data storage and genotype imputation. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	7
161	Simulation of sugar kelp (<i>Saccharina latissima</i>) breeding guided by practices to accelerate genetic gains. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	7
162	Comparison of Phenotyping Methods for Resistance to Stem Rot and Aggregated Sheath Spot in Rice. Crop Science, 2016, 56, 1619-1627.	0.8	6

#	Article	IF	CITATIONS
163	Genome-Wide Association Studies and Heritability Estimation in the Functional Genomics Era. Population Genomics, 2018, , 361-425.	0.2	6
164	Using public databases for genomic prediction of tropical maize lines. Plant Breeding, 2020, 139, 697-707.	1.0	6
165	Registration of â€~NE426CT' Winter Triticale. Crop Science, 2005, 45, 796-797.	0.8	5
166	Kernel Size Variation in Naked Oat. Crop Science, 2006, 46, 1117.	0.8	5
167	Diversity and Megaâ€Targets of Selection from the Characterization of a Barley Collection. Crop Science, 2009, 49, 483-497.	0.8	5
168	Selective Advance for Accelerated Development of Recombinant Inbred QTL Mapping Populations. Crop Science, 2009, 49, 1284-1294.	0.8	5
169	Ensemble learning with trees and rules: Supervised, semi-supervised, unsupervised. Intelligent Data Analysis, 2014, 18, 857-872.	0.4	5
170	Influence of Oat Kernel Size and Size Distributions on Test Weight. Cereal Research Communications, 2004, 32, 135-142.	0.8	5
171	A population based expression atlas provides insights into disease resistance and other physiological traits in cassava (Manihot esculenta Crantz). Scientific Reports, 2021, 11, 23520.	1.6	5
172	Improving Genomic Prediction in Cassava Field Experiments by Accounting for Interplot Competition. G3: Genes, Genomes, Genetics, 2018, 8, 933-944.	0.8	4
173	Microenzymatic Evaluation of Oat (<i>Avena sativa</i> L.) βâ€Glucan for Highâ€Throughput Phenotyping. Cereal Chemistry, 2014, 91, 183-188.	1.1	3
174	Outlook of Cassava Brown Streak Disease Assessment: Perspectives of the Screening Methods of Breeders and Pathologists. Frontiers in Plant Science, 2021, 12, 648436.	1.7	2
175	Sexual dimorphism and the effect of wild introgressions on recombination in cassava (<i>Manihot) Tj ETQq1 1 C</i>	0.784314	rgBT /Overlock
176	Towards equitable public sector plant breeding in the US. Crop Science, 0, , .	0.8	2