
Chang-Seon Shon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9502910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chloride ion diffusivity of fly ash and silica fume concretes exposed to freeze–thaw cycles. Construction and Building Materials, 2010, 24, 1739-1745.	3.2	95
2	Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixture. Construction and Building Materials, 2010, 24, 839-847.	3.2	62
3	Potential use of stockpiled circulating fluidized bed combustion ashes in manufacturing compressed earth bricks. Construction and Building Materials, 2009, 23, 2062-2071.	3.2	57
4	Determination of air-void system and modified frost resistance number for freeze-thaw resistance evaluation of ternary blended concrete made of ordinary Portland cement/silica fume/class F fly ash. Cold Regions Science and Technology, 2018, 155, 127-136.	1.6	44
5	Can Common Reed Fiber Become an Effective Construction Material? Physical, Mechanical, and Thermal Properties of Mortar Mixture Containing Common Reed Fiber. Sustainability, 2019, 11, 903.	1.6	39
6	Revisiting the Effect of Slag in Reducing Heat of Hydration in Concrete in Comparison to Other Supplementary Cementitious Materials. Materials, 2018, 11, 1847.	1.3	35
7	Effects of thermally modified asphalt concrete on pavement temperature. International Journal of Pavement Engineering, 2019, 20, 669-681.	2.2	33
8	Evaluation of modified ASTM C 1260 accelerated mortar bar test for alkali–silica reactivity. Cement and Concrete Research, 2002, 32, 1981-1987.	4.6	32
9	Testing the Effectiveness of Class C and Class F Fly Ash in Controlling Expansion due to Alkali-Silica Reaction Using Modified ASTM C 1260 Test Method. Journal of Materials in Civil Engineering, 2004, 16, 20-27.	1.3	29
10	Combined Use of Calcium Chloride and Fly Ash in Road Base Stabilization. Transportation Research Record, 2010, 2186, 120-129.	1.0	29
11	Freezing and thawing resistance of cellular concrete containing binary and ternary cementitious mixtures. Construction and Building Materials, 2018, 168, 73-81.	3.2	24
12	Evaluating feasibility of modified drilling waste materials in flexible base course construction. Construction and Building Materials, 2016, 116, 79-86.	3.2	21
13	Performance-based model to predict thermal conductivity of non-autoclaved aerated concrete through linearization approach. Construction and Building Materials, 2019, 196, 555-563.	3.2	21
14	Evaluation of West Texas natural zeolite as an alternative of ASTM Class F fly ash. Construction and Building Materials, 2013, 47, 389-396.	3.2	19
15	Potential use of borosilicate glass to make neutron shielding mortar: Enhancement of thermal neutron shielding and strength development and mitigation of alkali-silica reaction. Journal of Cleaner Production, 2019, 210, 638-645.	4.6	14
16	Assessment of Reactive powder concrete subjected to three different sodium sulfate Concentrations: Compressive Strength, Absorption, Porosity, Microstructure, and durability. Construction and Building Materials, 2022, 325, 126804.	3.2	14
17	Fly Ash-Calcium Chloride Stabilization in Road Construction. Transportation Research Record, 2008, 2053, 23-29.	1.0	12

18 Activation Energy of Alkali–Silica Reaction and Dilatometer Method. , 0, .

10

CHANG-SEON SHON

#	Article	IF	CITATIONS
19	Beneficiation of stockpiled fluidized bed coal ash in road base course construction. Construction and Building Materials, 2010, 24, 2072-2078.	3.2	9
20	Development of synthetic aggregate using off-ASTM specification ashes. Construction and Building Materials, 2013, 38, 700-707.	3.2	8
21	Frost Resistance Number to Assess Freeze and Thaw Resistance of Non-Autoclaved Aerated Concretes Containing Ground Granulated Blast-Furnace Slag and Micro-Silica. Materials, 2019, 12, 4151.	1.3	8
22	Alkali-Silica Reactivity Potential of Aggregate and Concrete Evaluated by Dilatometer Method. Transportation Research Record, 2007, 2020, 10-19.	1.0	7
23	Proportioning and Characterization of Reactive Powder Concrete for an Energy Storage Pile Application. Applied Sciences (Switzerland), 2018, 8, 2507.	1.3	7
24	Application of Modified ASTM C1260 Test for Fly Ash-Cement Mixtures. Transportation Research Record, 2003, 1834, 93-106.	1.0	7
25	Use of Off-ASTM Class F Fly Ash and Waste Limestone Powder in Mortar Mixtures Containing Waste Glass Sand. Sustainability, 2022, 14, 75.	1.6	7
26	Evaluation of synthetic aggregates using off-ASTM specification ashes as road base course materials. Construction and Building Materials, 2013, 38, 508-514.	3.2	6
27	Evaluation of Non-Autoclaved Aerated Concrete for Energy Behaviors of a Residential House in Nur-Sultan, Kazakhstan. Buildings, 2021, 11, 610.	1.4	6
28	Activation Energy of Alkali-Silica Reactionin CFBC Fly Ash Geopolymer Mortars. Materials Science Forum, 0, 882, 77-82.	0.3	5
29	Thermal Conductivity of Aerated Concrete Based on Response Surface Method. Materials Science Forum, 0, 917, 342-346.	0.3	5
30	New Performance-Based Approach to Ensure Quality Curing during Construction. Journal of Materials in Civil Engineering, 2010, 22, 687-695.	1.3	4
31	Mechanical performance and chloride ion penetration of polyolefin fiber reinforced concrete designed for shotcreting at marine environment. Journal of Structural Integrity and Maintenance, 2020, 5, 8-17.	0.7	4
32	Potential of limestone powder to improve the stabilization of sulfate-contained saline soil. IOP Conference Series: Materials Science and Engineering, 2021, 1040, 012016.	0.3	4
33	Alkali-Silica Reactivity Resistance of High-Volume Fly Ash Cementitious Systems. Transportation Research Record, 2002, 1798, 17-21.	1.0	3
34	In-situ and laboratory investigation of modified drilling waste materials applied on base-course construction. International Journal of Pavement Research and Technology, 2018, 11, 225-235.	1.3	3
35	Temperature Distributions inside Concrete Sections of Renewable Energy Storage Pile Foundations. Applied Sciences (Switzerland), 2019, 9, 4776.	1.3	3
36	ASR Resistance of Ternary Cementitious Systems Containing Silica Fume-Fly Ash Using Modified ASTM C 1260 Method. Journal of the Korea Concrete Institute, 2003, 15, 497-503.	0.1	3

CHANG-SEON SHON

#	Article	IF	CITATIONS
37	Structural responses of energy storage pile foundations under thermal-mechanical loadings. Journal of Building Engineering, 2022, 45, 103539.	1.6	3
38	Preliminary analytical study on seismic ductility demand of wood diaphragms. Advances in Structural Engineering, 2016, 19, 104-115.	1.2	2
39	Preliminary Experimental Investigation on the Strength and Air Permeability of Reactive Powder Concrete. Materials Science Forum, 0, 917, 321-328.	0.3	2
40	Group Pile Effect on Temperature Distributions inside Energy Storage Pile Foundations. Applied Sciences (Switzerland), 2020, 10, 6597.	1.3	2
41	Effect of Aggregate Packing on Strength of Reactive Powder Concrete: Modeling and Experimental Evaluation. Materials Science Forum, 2020, 998, 299-304.	0.3	2
42	Effects of Waste Soda-Lime Glass Sand and Glass Fiber on Physical and Mechanical Properties of None-Autoclaved Aerated Concrete. Materials Science Forum, 0, 1023, 141-146.	0.3	2
43	Characterization of Mellowing Process to Control Expansion in High-Sulfate-Bearing Soil. Transportation Research Record, 2022, 2676, 355-364.	1.0	2
44	Activation Energy of Alkali–Silica Reaction and Dilatometer Method. Transportation Research Record, 2006, 1979, 1-11.	1.0	1
45	Thermal Performance of Lightweight Aggregate Concrete Containing Expanded Shale Aggregates. Materials Science Forum, 2018, 911, 71-76.	0.3	1
46	Properties of Non-Autoclaved Aerated Concrete with Quadruple Cementitious Mixture Using Response Surface Method. Materials Science Forum, 2018, 917, 337-341.	0.3	1
47	Optimization of Compressive Strength of Reactive Powder Concrete for an Energy Storage Pile Application Using Response Surface Method. Materials Science Forum, 0, 950, 117-122.	0.3	1
48	Blended Basic Oxygen Furnace (BOF) Slag with Ground Granulated Blast Furnace Slag (GGBFS) as a Pozzolanic Material. Materials Science Forum, 0, 1053, 331-337.	0.3	1
49	Effect of pore solution alkalinity of fly ash-cement mixture on ASTM C 1260/C 1567 mortar bar expansion. , 2016, , .		0
50	Evaluation of thermal properties of aerated concrete used for student residential building, Astana, Kazakhstan. AIP Conference Proceedings, 2018, , .	0.3	0
51	Assessment of Recycled Toilet Bowl Wastes as Pozzolanic Materials: Material Characterization and Performance of Mortar Mixtures. Materials Science Forum, 0, 1023, 135-140.	0.3	0
52	How Efficient are LC3 and GGBFS-Contained Mortar Mixtures Submerged into Na ₂ SO ₄ Solution against External Sulfate Attack at an early Age?. Key Engineering Materials, 0, 902, 145-151.	0.4	0
53	High Sulfate-Bearing Kaolin Clay Stabilization with Waste Glass Powder before and after Mellowing Process. Key Engineering Materials, 0, 920, 232-238.	0.4	0