
Hans-Achim Wagenknecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9502891/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA as a supramolecular framework for the helical arrangements of chromophores: towards photoactive DNA-based nanomaterials. Chemical Communications, 2009, , 2615.	4.1	141
2	Reductive Electron Transfer and Transport of Excess Electrons in DNA. Angewandte Chemie - International Edition, 2003, 42, 2454-2460.	13.8	138
3	Structure-Sensitive and Self-Assembled Helical Pyrene Array Based on DNA Architecture. Angewandte Chemie - International Edition, 2006, 45, 3372-3375.	13.8	133
4	Electron transfer processes in DNA: mechanisms, biological relevance and applications in DNA analytics. Natural Product Reports, 2006, 23, 973.	10.3	125
5	One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting. Accounts of Chemical Research, 2015, 48, 2724-2733.	15.6	124
6	Perylene Bisimide Dimers as Fluorescent "Glue―for DNA and for Baseâ€Mismatch Detection. Angewandte Chemie - International Edition, 2008, 47, 2612-2614.	13.8	119
7	Real-Time Spectroscopic and Chemical Probing of Reductive Electron Transfer in DNA. Angewandte Chemie - International Edition, 2005, 44, 1636-1639.	13.8	96
8	Reductive Electron Transfer in Phenothiazine-Modified DNA Is Dependent on the Base Sequence. Chemistry - A European Journal, 2005, 11, 1871-1876.	3.3	96
9	Comparison of a Nucleosidic vs Non-Nucleosidic Postsynthetic "Click―Modification of DNA with Base-Labile Fluorescent Probes. Bioconjugate Chemistry, 2009, 20, 558-564.	3.6	94
10	Perylene-3,4:9,10-tetracarboxylic Acid Bisimide Dye as an Artificial DNA Base Surrogate. Organic Letters, 2006, 8, 4191-4194.	4.6	93
11	Fluorescent Color Readout of DNA Hybridization with Thiazole Orange as an Artificial DNA Base. Angewandte Chemie - International Edition, 2009, 48, 2418-2421.	13.8	87
12	Photochemical Design of Functional Fluorescent Single-Chain Nanoparticles. ACS Macro Letters, 2014, 3, 574-579.	4.8	87
13	Fluorescent Hydrophobic Zippers inside Duplex DNA: Interstrand Stacking of Peryleneâ€3,4:9,10â€ŧetracarboxylic Acid Bisimides as Artificial DNA Base Dyes. Chemistry - A European Journal, 2008, 14, 6640-6645.	3.3	83
14	"DNA Origami Traffic Lights―with a Split Aptamer Sensor for a Bicolor Fluorescence Readout. Nano Letters, 2017, 17, 2467-2472.	9.1	81
15	Base pair motions control the rates and distance dependencies of reductive and oxidative DNA charge transfer. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10192-10195.	7.1	72
16	Synthesis of 5â€(2â€Pyrenyl)â€2â€2â€deoxyuridine as a DNA Modification for Electronâ€Transfer Studies: The Critical Role of the Position of the Chromophore Attachment. European Journal of Organic Chemistry, 2008, 2008, 64-71.	2.4	72
17	Pyrene as a fluorescent probe for DNA base radicals. Chemical Communications, 2003, , 1878.	4.1	71
18	Development of a Metalâ€Ionâ€Mediated Base Pair for Electron Transfer in DNA. Chemistry - A European Journal, 2013, 19, 12547-12552.	3.3	70

#	Article	IF	CITATIONS
19	Ultrafast Proton-Coupled Electron-Transfer Dynamics in Pyrene-Modified Pyrimidine Nucleosides: Model Studies towards an Understanding of Reductive Electron Transport in DNA. ChemPhysChem, 2004, 5, 706-712.	2.1	69
20	In‣tem‣abeled Molecular Beacons for Distinct Fluorescent Color Readout. Angewandte Chemie - International Edition, 2011, 50, 7268-7272.	13.8	68
21	Photoredox Catalytic αâ€Alkoxypentafluorosulfanylation of αâ€Methyl―and αâ€Phenylstyrene Using SF ₆ . Angewandte Chemie - International Edition, 2020, 59, 300-303.	13.8	68
22	Synthesis of DNA with Phenanthridinium as an Artificial DNA Base. Journal of Organic Chemistry, 2004, 69, 744-751.	3.2	67
23	Photoredox Catalytic Activation of Sulfur Hexafluoride for Pentafluorosulfanylation of αâ€Methyl―and αâ€Phenyl Styrene. ChemCatChem, 2018, 10, 2955-2961.	3.7	66
24	1-Ethynylpyrene as a Tunable and Versatile Molecular Beacon for DNA. ChemBioChem, 2004, 5, 865-868.	2.6	65
25	Copperâ€Free Postsynthetic Labeling of Nucleic Acids by Means of Bioorthogonal Reactions. ChemBioChem, 2015, 16, 1541-1553.	2.6	65
26	Thiazole Orange and Cy3: Improvement of Fluorescent DNA Probes with Use of Short Range Electron Transfer. Journal of Organic Chemistry, 2008, 73, 4263-4266.	3.2	64
27	Preparation of 1-Ethynylpyrene-Modified DNA via Sonogashira-Type Solid-Phase Couplings and Characterization of the Fluorescence Properties for Electron-Transfer Studies. European Journal of Organic Chemistry, 2003, 2003, 2498-2504.	2.4	62
28	DNA as a supramolecular scaffold for the helical arrangement of a stack of 1-ethynylpyrene chromophores. Organic and Biomolecular Chemistry, 2006, 4, 2088.	2.8	58
29	"Photoclick―Postsynthetic Modification of DNA. Angewandte Chemie - International Edition, 2014, 53, 14580-14582.	13.8	56
30	Metal-Mediated DNA Base Pairing and Metal Arrays in Artificial DNA: Towards New Nanodevices. Angewandte Chemie - International Edition, 2003, 42, 3204-3206.	13.8	53
31	Whiteâ€Lightâ€Emitting DNA (WED). Chemistry - A European Journal, 2009, 15, 9307-9310.	3.3	51
32	1-Ethynylpyrene-modified guanine and cytosine as optical labels for DNA hybridization. Organic and Biomolecular Chemistry, 2005, 3, 2062.	2.8	50
33	Synthesis of 4-Aminophthalimide and 2,4-Diaminopyrimidine <i>C</i> -Nucleosides as Isosteric Fluorescent DNA Base Substitutes. Journal of Organic Chemistry, 2013, 78, 2589-2599.	3.2	49
34	<i>Fluorescent DNA Base Modifications and Substitutes: Multiple Fluorophore Labeling and the DETEQ Concept</i> . Annals of the New York Academy of Sciences, 2008, 1130, 122-130.	3.8	48
35	Synthesis and evaluation of cyanine–styryl dyes with enhanced photostability for fluorescent DNA staining. Organic and Biomolecular Chemistry, 2013, 11, 7458.	2.8	48
36	<i>N</i> -Arylphenothiazines as strong donors for photoredox catalysis – pushing the frontiers of nucleophilic addition of alcohols to alkenes. Beilstein Journal of Organic Chemistry, 2019, 15, 52-59.	2.2	48

#	Article	IF	CITATIONS
37	Helical Arrangement of Porphyrins along DNA: Towards Photoactive DNAâ€Based Nanoarchitectures. Angewandte Chemie - International Edition, 2009, 48, 2838-2841.	13.8	47
38	Phenanthridinium as an Artificial Base and Charge Donor in DNA. Angewandte Chemie - International Edition, 2004, 43, 1845-1847.	13.8	46
39	Nonâ€covalent Versus Covalent Control of Selfâ€Assembly and Chirality of Nile Redâ€modified Nucleoside and DNA. Chemistry - A European Journal, 2010, 16, 9040-9046.	3.3	43
40	Labelling of DNA and RNA in the cellular environment by means of bioorthogonal cycloaddition chemistry. RSC Chemical Biology, 2020, 1, 86-97.	4.1	43
41	DNA and RNA "Traffic Lights†Synthetic Wavelength-Shifting Fluorescent Probes Based on Nucleic Acid Base Substitutes for Molecular Imaging. Journal of Organic Chemistry, 2013, 78, 7373-7379.	3.2	42
42	Copper-free dual labeling of DNA by triazines and cyclopropenes as minimal orthogonal <i>and</i> bioorthogonal functions. Chemical Science, 2019, 10, 4032-4037.	7.4	42
43	Diarylethene-modified nucleotides for switching optical properties in DNA. Beilstein Journal of Organic Chemistry, 2012, 8, 905-914.	2.2	41
44	Real-time observation of hydrogen bond-assisted electron transfer to a DNA base. Chemical Physics Letters, 2005, 409, 277-280.	2.6	40
45	Synthesis and Optical Properties of Cyanine Dyes as Fluorescent DNA Base Substitutions for Live Cell Imaging. European Journal of Organic Chemistry, 2010, 2010, 1239-1248.	2.4	40
46	Postsynthetic Modifications of DNA and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions. Bioconjugate Chemistry, 2020, 31, 990-1011.	3.6	40
47	Optical, Redox, and DNAâ€Binding Properties of Phenanthridinium Chromophores: Elucidating the Role of the Phenyl Substituent for Fluorescence Enhancement of Ethidium in the Presence of DNA. Chemistry - A European Journal, 2010, 16, 3392-3402.	3.3	38
48	4,4-Difluoro-4-bora-3a,4a-diaza- <i>s</i> -indacene as a Bright Fluorescent Label for DNA. Journal of Organic Chemistry, 2011, 76, 2301-2304.	3.2	38
49	A "Clickable―Styryl Dye for Fluorescent DNA Labeling by Excitonic and Energy Transfer Interactions. Chemistry - A European Journal, 2012, 18, 1299-1302.	3.3	36
50	Photocatalytic nucleophilic addition of alcohols to styrenes in Markovnikov and anti-Markovnikov orientation. Beilstein Journal of Organic Chemistry, 2015, 11, 568-575.	2.2	36
51	Scope and Limitations of Typical Copper-Free Bioorthogonal Reactions with DNA: Reactive 2′-Deoxyuridine Triphosphates for Postsynthetic Labeling. Journal of Organic Chemistry, 2016, 81, 7527-7538.	3.2	36
52	Exciton and Excimer Formation in DNA at Room Temperature. ChemPhysChem, 2002, 3, 704.	2.1	33
53	In situ azide formation and "click―reaction of nile red with DNA as an alternative postsynthetic route. Chemical Communications, 2010, 46, 2230.	4.1	33
54	DNA-templated formation of fluorescent self-assembly of ethynyl pyrenes. Chemical Communications, 2013, 49, 9257.	4.1	33

#	Article	IF	CITATIONS
55	A DNA–Fullerene Conjugate as a Template for Supramolecular Chromophore Assemblies: Towards DNAâ€Based Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 1904-1908.	13.8	33
56	Photoredoxkatalytische αâ€Alkoxypentafluorosulfanylierung von αâ€Methyl―und αâ€Phenylstyrol mithilfe von SF 6. Angewandte Chemie, 2020, 132, 306-310.	2.0	33
57	Helical self-assembled chromophore clusters based on DNA-like architecture. Tetrahedron, 2007, 63, 3434-3439.	1.9	32
58	A new structure–activity relationship for cyanine dyes to improve photostability and fluorescence properties for live cell imaging. Chemical Science, 2018, 9, 6557-6563.	7.4	32
59	RNA "Traffic Lights― An Analytical Tool to Monitor siRNA Integrity. ACS Chemical Biology, 2013, 8, 890-894.	3.4	31
60	Mixed non-covalent assemblies of ethynyl nile red and ethynyl pyrene along oligonucleotide templates. Organic and Biomolecular Chemistry, 2015, 13, 487-492.	2.8	30
61	Strand displacement and duplex invasion into double-stranded DNA by pyrrolidinyl peptide nucleic acids. Organic and Biomolecular Chemistry, 2015, 13, 9223-9230.	2.8	29
62	5â€(Pyrenâ€1â€yl)uracil as a Baseâ€Discriminating Fluorescent Nucleobase in Pyrrolidinyl Peptide Nucleic Acids. Chemistry - an Asian Journal, 2011, 6, 3251-3259.	3.3	28
63	Reduktiver Elektronentransfer und Transport von Überschusselektronen in DNA. Angewandte Chemie, 2003, 115, 2558-2565.	2.0	27
64	Assembly of DNA Triangles Mediated by Perylene Bisimide Caps. Chemistry - A European Journal, 2011, 17, 6683-6688.	3.3	27
65	Bright and photostable cyanine-styryl chromophores with green and red fluorescence colour for DNA staining. Methods and Applications in Fluorescence, 2015, 3, 044003.	2.3	25
66	Polarity Sensitive Bioorthogonally Applicable Far-Red Emitting Labels for Postsynthetic Nucleic Acid Labeling by Copper-Catalyzed and Copper-Free Cycloaddition. Bioconjugate Chemistry, 2016, 27, 457-464.	3.6	25
67	Red–white–blue emission switching molecular beacons: ratiometric multicolour DNA hybridization probes. Organic and Biomolecular Chemistry, 2010, 8, 526-528.	2.8	24
68	1,2,4â€Triazineâ€Modified 2′â€Deoxyuridine Triphosphate for Efficient Bioorthogonal Fluorescent Labeling of DNA. ChemBioChem, 2017, 18, 1473-1476.	2.6	24
69	Photoredox Catalytic Pentafluorosulfanylative Domino Cyclization of α‣ubstituted Alkenes to Oxaheterocycles by Using SF ₆ . Chemistry - A European Journal, 2021, 27, 8088-8093.	3.3	24
70	Phenothiazine as a redox-active DNA base substitute: comparison with phenothiazine-modified uridine. Organic and Biomolecular Chemistry, 2008, 6, 48-50.	2.8	23
71	Indole in DNA: Comparison of a Nucleosidic with a Nonâ€Nucleosidic DNA Base Substitution. European Journal of Organic Chemistry, 2009, 2009, 364-370.	2.4	23
72	Molecular movement in the Arabidopsis thaliana female gametophyte. Plant Reproduction, 2017, 30, 141-146.	2.2	23

#	Article	IF	CITATIONS
73	Imaging of RNA delivery to cells by thiazole orange as a fluorescent RNA base substitution. Organic and Biomolecular Chemistry, 2010, 8, 997.	2.8	22
74	2′-Deoxyuridine conjugated with a reactive monobenzocyclooctyne as a DNA building block for copper-free click-type postsynthetic modification of DNA. Chemical Communications, 2014, 50, 11218.	4.1	22
75	Bifunctional DNA Architectonics: Threeâ€Way Junctions with Sticky Perylene Bisimide Caps and a Central Metal Lock. Chemistry - A European Journal, 2014, 20, 12009-12014.	3.3	22
76	Elucidation of the Dexterâ€Type Energy Transfer in DNA by Thymine–Thymine Dimer Formation Using Photosensitizers as Artificial Nucleosides. Angewandte Chemie - International Edition, 2017, 56, 1385-1389.	13.8	22
77	Fluorogenic "photoclick―labelling of DNA using a Cy3 dye. Organic and Biomolecular Chemistry, 2018, 16, 7579-7582.	2.8	22
78	Organic Chemistry of DNA Functionalization; Chromophores as DNA Base Substitutes versus DNA Base/2′-Modifications. Synlett, 2012, 23, 2435-2448.	1.8	21
79	Photoinduced Reductive Electron Transfer in LNA:DNA Hybrids: A Compromise between Conformation and Base Stacking. Angewandte Chemie - International Edition, 2012, 51, 10026-10029.	13.8	21
80	"DNA Traffic Lights― Concept of Wavelengthâ€Shifting DNA Probes and Application in an Aptasensor. ChemBioChem, 2012, 13, 1136-1138.	2.6	21
81	DNA "Nanolampsâ€ı "Clickedâ€ıDNA Conjugates with Photon Upconverting Nanoparticles as Highly Emissive Biomaterial. ChemPlusChem, 2012, 77, 129-134.	2.8	21
82	Synthesis of 2′- <i>O</i> -Propargyl Nucleoside Triphosphates for Enzymatic Oligonucleotide Preparation and "Click―Modification of DNA with Nile Red as Fluorescent Probe. Bioconjugate Chemistry, 2013, 24, 301-304.	3.6	21
83	DNAâ€Based Oligochromophores as Lightâ€Harvesting Systems. Chemistry - A European Journal, 2015, 21, 9349-9354.	3.3	21
84	Thiazole Orange Dimers in DNA: Fluorescent Base Substitutions with Hybridization Readout. Chemistry - A European Journal, 2016, 22, 2386-2395.	3.3	21
85	New Farâ€red and Nearâ€infrared Fluorescent Probes with Large Stokes Shifts for Dual Covalent Labeling of DNA. Chemistry - an Asian Journal, 2010, 5, 1761-1764.	3.3	20
86	Photoinduced short-range electron transfer in DNA with fluorescent DNA bases: lessons from ethidium and thiazole orange as charge donors. Physical Chemistry Chemical Physics, 2010, 12, 32-43.	2.8	20
87	Synthesis of DNA with Green Perylene Bisimides as DNA Base Substitutions. European Journal of Organic Chemistry, 2011, 2011, 4564-4570.	2.4	20
88	Synthesis of a Photostable Energyâ€Transfer Pair for "DNA Traffic Lights― European Journal of Organic Chemistry, 2014, 2014, 7547-7551.	2.4	20
89	Synthesis of Benzophenone Nucleosides and Their Photocatalytic Evaluation for [2+2] Cycloaddition in Aqueous Media. European Journal of Organic Chemistry, 2015, 2015, 6661-6668.	2.4	20
90	Nucleotide insertion and bypass synthesis of pyrene- and BODIPY-modified oligonucleotides by DNA polymerases. Chemical Communications, 2008, , 1443.	4.1	18

#	Article	IF	CITATIONS
91	DNA Primer Extension with Cyclopropenylated 7â€Deazaâ€2â€4âedeoxyadenosine and Efficient Bioorthogonal Labeling in Vitro and in Living Cells. ChemBioChem, 2018, 19, 1949-1953.	2.6	18
92	Energy-transfer-based wavelength-shifting DNA probes with "clickable―cyanine dyes. Photochemical and Photobiological Sciences, 2013, 12, 722.	2.9	17
93	Covalent Modification of 2′-Deoxyuridine with Two Different Molecular Switches. Synlett, 2012, 23, 711-716.	1.8	16
94	Two wavelength-shifting molecular beacons for simultaneous and selective imaging of vesicular miRNA-21 and miRNA-31 in living cancer cells. Organic and Biomolecular Chemistry, 2016, 14, 5001-5006.	2.8	16
95	Development of a Wavelengthâ€6hifting Fluorescent Module for the Adenosine Aptamer Using Photostable Cyanine Dyes. ChemistryOpen, 2015, 4, 92-96.	1.9	15
96	Metal-mediated DNA assembly using the ethynyl linked terpyridine ligand. Organic and Biomolecular Chemistry, 2012, 10, 46-48.	2.8	14
97	Synthesis and optical properties of pyrrolidinyl peptide nucleic acid carrying a clicked Nile red label. Beilstein Journal of Organic Chemistry, 2014, 10, 2166-2174.	2.2	14
98	Synthesis of DNA Conjugates with Metalated Tetracationic Porphyrins by Postsynthetic Cycloadditions. Organic Letters, 2014, 16, 1692-1695.	4.6	14
99	Synthesis and Evaluation of Nicotinic Acid Derived Tetrazines for Bioorthogonal Labeling. Synthesis, 2015, 47, 2738-2744.	2.3	14
100	Substitution of Metallocenes with [2.2]Paracyclophane to Enable Confocal Microscopy Imaging in Living Cells. European Journal of Inorganic Chemistry, 2017, 2017, 297-305.	2.0	13
101	Synthesis of DNA Modified with Boronic Acid: Compatibility to Copper(I)-Catalyzed Azide–Alkyne Cycloaddition. Bioconjugate Chemistry, 2018, 29, 431-436.	3.6	13
102	Chemical Photocatalysis with 1-(N,N-Dimethylamino)pyrene. Synlett, 2012, 23, 2803-2807.	1.8	12
103	Conformational control of benzophenone-sensitized charge transfer in dinucleotides. Physical Chemistry Chemical Physics, 2013, 15, 18607.	2.8	12
104	Programmable and Sequenceâ€6elective Supramolecular Assembly of Two Different Chromophores along DNA Templates. Chemistry - A European Journal, 2018, 24, 16257-16261.	3.3	12
105	Triazine-Modified 7-Deaza-2′-deoxyadenosines: Better Suited for Bioorthogonal Labeling of DNA by PCR than 2′-Deoxyuridines. Bioconjugate Chemistry, 2019, 30, 1773-1780.	3.6	12
106	Synthesis of <i>N</i> , <i>N</i> â€dimethylaminopyreneâ€modified short peptides for chemical photocatalysis. Journal of Peptide Science, 2017, 23, 563-566.	1.4	11
107	Photocatalysis of a [2+2] Cycloaddition in Aqueous Solution Using DNA Threeâ€Way Junctions as Chiral PhotoDNAzymes. ChemPhotoChem, 2017, 1, 48-50.	3.0	11
108	Prolineâ€Rich Short Peptides with Photocatalytic Activity for the Nucleophilic Addition of Methanol to Phenylethylenes. European Journal of Organic Chemistry, 2018, 2018, 2204-2207.	2.4	11

#	Article	IF	CITATIONS
109	Significant Fluorescence Enhancement of <i>N</i> , <i>N</i> â€Dimethylaminobenzophenone after Embedding as a Câ€Nucleoside in DNA. ChemPhotoChem, 2018, 2, 12-17.	3.0	11
110	Control of helical chirality in supramolecular chromophore–DNA architectures. Chemical Communications, 2019, 55, 1330-1333.	4.1	11
111	Photochemical Activation of Sulfur Hexafluoride: A Tool for Fluorination and Pentafluorosulfanylation Reactions. Synthesis, 2022, 54, 4883-4894.	2.3	11
112	4â€Aminophthalimide Amino Acids as Small and Environment‣ensitive Fluorescent Probes for Transmembrane Peptides. ChemBioChem, 2020, 21, 618-622.	2.6	10
113	How Far Does Energy Migrate in DNA and Cause Damage? Evidence for Longâ€Range Photodamage to DNA. Angewandte Chemie - International Edition, 2020, 59, 17378-17382.	13.8	10
114	The Dependence of Chemical Quantum Yields of Visible Light Photoredox Catalysis on the Irradiation Power. ChemPhotoChem, 2021, 5, 1009-1019.	3.0	10
115	Synthetic incorporation of Nile Blue into DNA using 2′-deoxyriboside substitutes: Representative comparison of (<i>R</i>)- and (<i>S</i>)-aminopropanediol as an acyclic linker. Beilstein Journal of Organic Chemistry, 2010, 6, 13.	2.2	9
116	Acceleration of Longâ€Range Photoinduced Electron Transfer through DNA by Hydroxyquinolines as Artificial Base Pairs. ChemPhysChem, 2015, 16, 1607-1612.	2.1	9
117	An Isosteric and Fluorescent DNA Base Pair Consisting of 4â€aminophthalimide and 2,4â€diaminopyrimidine as Câ€Nucleosides. Angewandte Chemie - International Edition, 2017, 56, 384-388.	13.8	9
118	A postsynthetically 2'-"clickable―uridine with arabino configuration and its application for fluorescent labeling and imaging of DNA. Beilstein Journal of Organic Chemistry, 2017, 13, 127-137.	2.2	9
119	Control of Energy Transfer Between Pyrene―and Peryleneâ€Nucleosides by the Sequence of DNAâ€Templated Supramolecular Assemblies. ChemistryOpen, 2020, 9, 389-392.	1.9	9
120	Remote Photodamaging of DNA by Photoinduced Energy Transport. ChemBioChem, 2022, 23, .	2.6	9
121	Fast and Efficient Postsynthetic DNA Labeling in Cells by Means of Strainâ€Promoted Sydnoneâ€Alkyne Cycloadditions. Chemistry - A European Journal, 2021, 27, 16093-16097.	3.3	9
122	Unraveling the Pathways to UVAâ€Induced DNA Photodamage: (6–4) Photoproduct as a Potential "Trojan Horseâ€: ChemPhysChem, 2013, 14, 3197-3198.	2.1	8
123	Dynamic DNA architectures: spontaneous DNA strand exchange and self-sorting driven by perylene bisimide interactions. Chemical Communications, 2015, 51, 16530-16533.	4.1	8
124	Ein DNAâ€Fullerenâ€Konjugat als Templat für supramolekulare Chromophorstapel: Auf dem Weg zu DNAâ€basierten Solarzellen. Angewandte Chemie, 2016, 128, 1936-1941.	2.0	8
125	Synthesis of Wavelengthâ€Shifting Fluorescent DNA and RNA with Two Photostable Cyanine–Styryl Dyes as the Base Surrogate Pair. ChemistryOpen, 2017, 6, 514-518.	1.9	8
126	The role of duplex stability for wavelength-shifting fluorescent DNA probes: energy transfer vs. exciton interactions in DNA "traffic lights― Photochemical and Photobiological Sciences, 2014, 13, 1126-1129.	2.9	7

#	Article	IF	CITATIONS
127	Naphthalene diimides with improved solubility for visible light photoredox catalysis. Beilstein Journal of Organic Chemistry, 2019, 15, 2043-2051.	2.2	7
128	Fluorogenic and Bioorthogonal Modification of RNA Using Photoclick Chemistry. Biomolecules, 2020, 10, 480.	4.0	7
129	Nucleophilic Alkoxylations of Unactivated Alkyl Olefins and αâ€Methyl Styrene by Photoredox Catalysis. European Journal of Organic Chemistry, 2021, 2021, 773-776.	2.4	7
130	The Search for Single DNA Damage among Millions of Base Pairs: DNA Glycosylases Trapped at Work. Angewandte Chemie - International Edition, 2006, 45, 5583-5585.	13.8	6
131	Conformational Control of Dual Emission by Pyrrolidinyl PNA–DNA Hybrids. ChemistryOpen, 2012, 1, 173-176.	1.9	6
132	Mesityl phenanthroline-modified 2′-deoxyuridine for heteroleptic complexes in metal ion-mediated assembly of DNA. Dalton Transactions, 2015, 44, 6715-6718.	3.3	6
133	Pyrene–nucleobase conjugates: synthesis, oligonucleotide binding and confocal bioimaging studies. Beilstein Journal of Organic Chemistry, 2017, 13, 2521-2534.	2.2	6
134	Tackling Tumour Cell Heterogeneity at the Super-Resolution Level in Human Colorectal Cancer Tissue. Cancers, 2021, 13, 3692.	3.7	6
135	A simple pyrene "click―type modification of DNA affects solubilisation and photoluminescence of single-walled carbon nanotubes. RSC Advances, 2013, 3, 6331.	3.6	5
136	In-stem labelling allows visualization of DNA strand displacements by distinct fluorescent colour change. Organic and Biomolecular Chemistry, 2013, 11, 3085.	2.8	5
137	The base discriminating potential of pyrrolidinyl PNA demonstrated by magnetic FexOy particles. Organic and Biomolecular Chemistry, 2014, 12, 3586.	2.8	5
138	Light-induced functions in DNA. Current Opinion in Chemical Biology, 2017, 40, 119-126.	6.1	5
139	Molecular Chromophore-DNA Architectures With Fullerenes: Optical Properties and Solar Cells. Frontiers in Chemistry, 2021, 9, 645006.	3.6	5
140	Synthesis of Wavelength-shifting DNA Hybridization Probes by Using Photostable Cyanine Dyes. Journal of Visualized Experiments, 2016, , .	0.3	4
141	Aufkläung des Dexterâ€Energietransfers in DNA an der Thyminâ€Thyminâ€Dimerbildung mithilfe von Photosensibilisatoren als artifizielle Nucleoside. Angewandte Chemie, 2017, 129, 1406-1410.	2.0	4
142	"siRNA traffic lights― arabino-configured 2′-anchors for fluorescent dyes are key for dual color readout in cell imaging. Organic and Biomolecular Chemistry, 2018, 16, 3726-3731.	2.8	4
143	Wie weit wandert Energie in der DNA und verursacht SchÄ d en? Nachweis des langreichweitigen Photoschadens in DNA. Angewandte Chemie, 2020, 132, 17530-17535.	2.0	4
144	N-Arylbenzo[b]phenothiazines as Reducing Photoredox Catalysts for Nucleophilic Additions of Alcohols to Styrenes: Shift towards Visible Light. Synlett, 2021, 32, 582-586.	1.8	4

#	Article	IF	CITATIONS
145	Fluorescence Quenching over Short Range in a Donorâ€DNAâ€Acceptor System. ChemPhysChem, 2013, 14, 1197-1204.	2.1	3
146	Thieme Chemistry Journal Awardees – Where are They Now? The Influence of Electron-Withdrawing Groups at the 2- and 2â€2-Positions of Dibenzothienylethenes on Molecular Switching. Synlett, 2017, 28, 1422-1426.	1.8	3
147	Synthesis of Dyeâ€Modified Oligonucleotides via Copper(I)â€Catalyzed Alkyne Azide Cycloaddition Using On―and Offâ€Bead Approaches. Current Protocols in Nucleic Acid Chemistry, 2018, 72, 4.80.1-4.80.13.	0.5	3
148	Influences of Linker and Nucleoside for the Helical Self-Assembly of Perylene Along DNA Templates. Frontiers in Chemistry, 2019, 7, 659.	3.6	3
149	DNA-templated control of chirality and efficient energy transport in supramolecular DNA architectures with aggregation-induced emission. Chemical Science, 2021, 12, 10048-10053.	7.4	3
150	The Concept of Photozymes: Short Peptides with Photoredox Catalytic Activity for Nucleophilic Additions to αâ€Phenyl Styrenes. European Journal of Organic Chemistry, 2021, 2021, 6400-6407.	2.4	3
151	Photochemically Active Fluorophore–DNA/RNA Conjugates for Cellular Imaging of Nucleic Acids by Readout in Electron Microscopy. ChemistryOpen, 2013, 2, 136-140.	1.9	2
152	Directed Electron Transfer in Flavin Peptides with Oligoprolineâ€Type Helical Conformation as Models for Flavinâ€Functional Proteins. ChemistryOpen, 2020, 9, 1264-1269.	1.9	2
153	Fluorescence Lifetime Imaging Microscopy (FLIM) of Intracellular Transport by Means of Doubly Labelled siRNA Architectures. ChemBioChem, 2021, 22, 2561-2567.	2.6	2
154	Complementary Photocatalytic Toolbox: Control of Intramolecular endo- versus exo-trig Cyclizations of α-Phenyl Olefins to Oxaheterocyclic Products. Synlett, 2022, 33, 1199-1204.	1.8	2
155	Photoinduced Electron Transfer Processes in Synthetically Modified DNA. , 0, , 439-464.		1
156	Radical Intermediates during Reductive Electron Transfer through DNA. , 0, , 211-237.		1
157	(Non-) Covalently Modified DNA with Novel Functions. , 2015, , 1-77.		1
158	Synthetic Wavelength-Shifting Fluorescent Probes of Nucleic Acids. Nucleic Acids and Molecular Biology, 2016, , 83-100.	0.2	1
159	Ein isosteres und fluoreszierendes DNA-Basenpaar aus 4-Aminophthalimid und 2,4-Diaminopyrimidin als C-Nucleoside. Angewandte Chemie, 2017, 129, 392-396.	2.0	1
160	Frontispiece: How Far Does Energy Migrate in DNA and Cause Damage? Evidence for Longâ€Range Photodamage to DNA. Angewandte Chemie - International Edition, 2020, 59, .	13.8	1
161	Aggregation-induced emission by sequence-selective assembly of cyanolated distyrylbenzene in supramolecular DNA architectures. Chemical Communications, 2022, 58, 6437-6440.	4.1	1
162	Inside Cover: "DNA Traffic Lights― Concept of Wavelength-Shifting DNA Probes and Application in an Aptasensor (ChemBioChem 8/2012). ChemBioChem, 2012, 13, 1082-1082.	2.6	0

#	Article	IF	CITATIONS
163	Nucleic acid chemistry. Beilstein Journal of Organic Chemistry, 2014, 10, 2928-2929.	2.2	0
164	Aus DNA wird Solarzelle. Nachrichten Aus Der Chemie, 2016, 64, 1148-1151.	0.0	0
165	Photocatalysis of a [2+2] Cycloaddition in Aqueous Solution Using DNA Three-Way Junctions as Chiral PhotoDNAzymes. ChemPhotoChem, 2017, 1, 47-47.	3.0	Ο
166	Photocatalysis with nucleic acids and peptides. Physical Sciences Reviews, 2018, 3, .	0.8	0
167	Substitution of Metallocenes with [2.2]Paracyclophane to Enable Confocal Microscopy Imaging in Living Cells. European Journal of Inorganic Chemistry, 2019, 2019, 2565-2565.	2.0	О
168	Frontispiz: Wie weit wandert Energie in der DNA und verursacht SchÃ ë en? Nachweis des langreichweitigen Photoschadens in DNA. Angewandte Chemie, 2020, 132, .	2.0	0