
Hideo Matsumura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9502804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 2012, 30, 174-178.	9.4	1,087
2	Association Genetics Reveals Three Novel Avirulence Genes from the Rice Blast Fungal Pathogen <i>Magnaporthe oryzae</i> Â Â. Plant Cell, 2009, 21, 1573-1591.	3.1	410
3	A multifaceted genomics approach allows the isolation of the rice <i>Pia</i> â€blast resistance gene consisting of two adjacent NBSâ€LRR protein genes. Plant Journal, 2011, 66, 467-479.	2.8	287
4	Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15718-15723.	3.3	273
5	MutMap+: Genetic Mapping and Mutant Identification without Crossing in Rice. PLoS ONE, 2013, 8, e68529.	1.1	267
6	MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology, 2015, 33, 445-449.	9.4	265
7	OsHKT1;5 mediates Na ⁺ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant Journal, 2017, 91, 657-670.	2.8	210
8	SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics, 2008, 9, 553.	1.2	209
9	<pre><scp>M</scp>ut<scp>M</scp>apâ€<scp>G</scp>ap: wholeâ€genome resequencing of mutant <scp>F</scp>2 progeny bulk combined with <i>de novo</i> assembly of gap regions identifies the rice blast resistance gene <scp><i>Pii</i></scp>. New Phytologist, 2013, 200, 276-283.</pre>	3.5	196
10	Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Molecular Biology, 2012, 80, 621-629.	2.0	173
11	Transcript profiling in rice (Oryza sativa L.) seedlings using serial analysis of gene expression (SAGE). Plant Journal, 1999, 20, 719-726.	2.8	162
12	Coordination of Plastid Protein Import and Nuclear Gene Expression by Plastid-to-Nucleus Retrograde Signaling. Plant Physiology, 2009, 151, 1339-1353.	2.3	152
13	Large-Scale Gene Disruption in Magnaporthe oryzae Identifies MC69, a Secreted Protein Required for Infection by Monocot and Dicot Fungal Pathogens. PLoS Pathogens, 2012, 8, e1002711.	2.1	150
14	Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC Biology, 2017, 15, 86.	1.7	114
15	A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa) Tj ETQq1 🕻	L 0.78431 2.0	4 rgBT /Ov∈
16	Spermine signaling plays a significant role in the defense response of Arabidopsis thaliana to cucumber mosaic virus. Journal of Plant Physiology, 2009, 166, 626-643.	1.6	107
17	Large-scale DNA polymorphism study of Oryza sativa and O. rufipogon reveals the origin and divergence of Asian rice. Theoretical and Applied Genetics, 2007, 114, 731-743.	1.8	98
18	High-Throughput SuperSAGE for Digital Gene Expression Analysis of Multiple Samples Using Next Generation Sequencing. PLoS ONE, 2010, 5, e12010.	1.1	98

HIDEO MATSUMURA

39

#	Article	IF	CITATIONS
19	Draft genome sequence of bitter gourd (<i>Momordica charantia</i>), a vegetable and medicinal plant in tropical and subtropical regions. DNA Research, 2017, 24, dsw047.	1.5	93
20	Functional characterization of a new grapevine MYB transcription factor and regulation of proanthocyanidin biosynthesis in grapes. Journal of Experimental Botany, 2014, 65, 4433-4449.	2.4	87
21	A high-throughput screen of cell-death-inducing factors in Nicotiana benthamiana identifies a novel MAPKK that mediates INF1-induced cell death signaling and non-host resistance to Pseudomonas cichorii. Plant Journal, 2007, 49, 1030-1040.	2.8	86
22	Metabolome Analysis of Response to Oxidative Stress in Rice Suspension Cells Overexpressing Cell Death Suppressor Bax Inhibitor-1. Plant and Cell Physiology, 2010, 51, 9-20.	1.5	86
23	SuperSAGE. Cellular Microbiology, 2004, 7, 11-18.	1.1	79
24	High-throughput in planta expression screening identifies a class II ethylene-responsive element binding factor-like protein that regulates plant cell death and non-host resistance. Plant Journal, 2005, 43, 491-505.	2.8	71
25	Mapping of the Gynoecy in Bitter Gourd (Momordica charantia) Using RAD-Seq Analysis. PLoS ONE, 2014, 9, e87138.	1.1	65
26	SuperSAGE array: the direct use of 26-base-pair transcript tags in oligonucleotide arrays. Nature Methods, 2006, 3, 469-474.	9.0	57
27	â€~Candidatus Liberibacter asiaticus', Causal Agent of Citrus Huanglongbing, Is Reduced by Treatment with Brassinosteroids. PLoS ONE, 2016, 11, e0146223.	1.1	51
28	Functional genomics in a non-model crop: transcriptomics or proteomics?. Physiologia Plantarum, 2008, 133, 117-130.	2.6	50
29	SuperSAGE: A Modern Platform for Genome-Wide Quantitative Transcript Profiling. Current Pharmaceutical Biotechnology, 2008, 9, 368-374.	0.9	46
30	Digital Transcriptome Analysis of Putative Sex-Determination Genes in Papaya (Carica papaya). PLoS ONE, 2012, 7, e40904.	1.1	46
31	A Point Mutation of Adh1 Gene is Involved in the Repression of Coleoptile Elongation under Submergence in Rice. Breeding Science, 2006, 56, 69-74.	0.9	45
32	Rice alcohol dehydrogenase 1 promotes survival and has a major impact on carbohydrate metabolism in the embryo and endosperm when seeds are germinated in partially oxygenated water. Annals of Botany, 2014, 113, 851-859.	1.4	45
33	Long-read bitter gourd (<i>Momordica charantia</i>) genome and the genomic architecture of nonclassic domestication. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14543-14551.	3.3	43
34	SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa) Tj ETQq0 0 0 r	rgBT /Over 1.8	lock 10 Tf 50
35	Cell division and cell elongation in the coleoptile of rice alcohol dehydrogenase 1-deficient mutant are reduced under complete submergence. Annals of Botany, 2011, 108, 253-261.	1.4	40

Regulatory Mechanisms of ROI Generation are Affected by Rice spl Mutations. Plant and Cell Physiology, 2006, 47, 1035-1044.

HIDEO MATSUMURA

#	Article	IF	CITATIONS
37	Gill transcriptome response to changes in environmental calcium in the green spotted puffer fish. BMC Genomics, 2010, 11, 476.	1.2	39
38	Highâ€throughput <i>in planta</i> expression screening identifies an ADPâ€ribosylation factor (<i>ARF1</i>) involved in nonâ€host resistance and <i>R</i> geneâ€mediated resistance. Molecular Plant Pathology, 2008, 9, 25-36.	2.0	38
39	Serine Palmitoyltransferase, the First Step Enzyme in Sphingolipid Biosynthesis, Is Involved in Nonhost Resistance. Molecular Plant-Microbe Interactions, 2009, 22, 31-38.	1.4	37
40	Magnaporthe oryzae Glycine-Rich Secretion Protein, Rbf1 Critically Participates in Pathogenicity through the Focal Formation of the Biotrophic Interfacial Complex. PLoS Pathogens, 2016, 12, e1005921.	2.1	33
41	A CIN-like TCP transcription factor (LsTCP4) having retrotransposon insertion associates with a shift from Salinas type to Empire type in crisphead lettuce (Lactuca sativa L.). Horticulture Research, 2020, 7, 15.	2.9	30
42	The cell death factor, cell wall elicitor of rice blast fungus (Magnaporthe grisea) causes metabolic alterations including GABA shunt in rice cultured cells. Plant Signaling and Behavior, 2008, 3, 945-953.	1.2	28
43	Genome sequence comparison reveals a candidate gene involved in male–hermaphrodite differentiation in papaya (Carica papaya) trees. Molecular Genetics and Genomics, 2015, 290, 661-670.	1.0	26
44	Deep sequencing uncovers commonality in small RNA profiles between transgene-induced and naturally occurring RNA silencing of chalcone synthase-A gene in petunia. BMC Genomics, 2013, 14, 63.	1.2	23
45	Functional Characterization and Modulation of the DNA Cleavage Efficiency of Type III Restriction Endonuclease EcoP15I in Its Interaction with Two Sites in the DNA Target. Journal of Molecular Biology, 2009, 387, 1309-1319.	2.0	21
46	SuperSAGE revealed different classes of early resistance response genes in CapsicumÂchinense plants harboring L 3 -resistance gene infected with PepperÂmildÂmottleÂvirus. Journal of General Plant Pathology, 2008, 74, 313-321.	0.6	18
47	Analysis of RAPD and AFLP markers linked to resistance to Fusarium oxysporum f. sp. lactucae race 2 in lettuce (Lactuca sativa L.). Euphytica, 2012, 187, 1-9.	0.6	17
48	A Rice Mutant Lacking Alcohol Dehydrogenase Breeding Science, 1995, 45, 365-367.	0.2	16
49	SuperSAGE: Powerful Serial Analysis of Gene Expression. Methods in Molecular Biology, 2012, 883, 1-17.	0.4	16
50	Identification of candidate flowering and sex genes in white Guinea yam (D. rotundata Poir.) by SuperSAGE transcriptome profiling. PLoS ONE, 2019, 14, e0216912.	1.1	16
51	Unravelling the interaction of human cytomegalovirus with dendritic cells by using SuperSAGE. Journal of General Virology, 2009, 90, 2221-2233.	1.3	12
52	The gene expression landscape of thermogenic skunk cabbage suggests critical roles for mitochondrial and vacuolar metabolic pathways in the regulation of thermogenesis. Plant, Cell and Environment, 2012, 35, 554-566.	2.8	12
53	Leaf margin phenotype-specific restriction-site-associated DNA-derived markers for pineapple (<i>Ananas comosus</i> L.). Breeding Science, 2015, 65, 276-284.	0.9	12
54	SuperSAGE. Methods in Molecular Biology, 2008, 387, 55-70.	0.4	12

4

#	Article	IF	Citations
55	High-Throughput SuperSAGE. Methods in Molecular Biology, 2011, 687, 135-146.	0.4	10
56	Use of TILLING for Reverse and Forward Genetics of Rice. , 0, , 185-197.		9
57	Identification of dominant genetic markers relevant to male sex determination in mulberry (Morus) Tj ETQq1 1 C).784314 0.6	rgBT /Overloc
58	Expression of a microbial serine proteinase inhibitor gene enhances the tobacco defense against oomycete pathogens. Physiological and Molecular Plant Pathology, 2013, 84, 99-106.	1.3	7
59	ldentification of two QTLs for resistance to Fusarium wilt race 1 in lettuce (Lactuca sativa L.). Euphytica, 2020, 216, 1.	0.6	7
60	Unraveling the roles of sphingolipids in plant innate immunity. Plant Signaling and Behavior, 2009, 4, 536-538.	1.2	6
61	Dissecting the all-hermaphrodite phenomenon of a rare X chromosome mutant in papaya (Carica papaya) Tj ETÇ	2q1_1_0.78	34314 rgBT /C
62	Cloning of a heat stress transcription factor, CphsfB1, that is constitutively expressed in radicles and is heat-inducible in the leaves of Carica papaya. Plant Cell, Tissue and Organ Culture, 2010, 102, 69-77.	1.2	5
63	HT‣uperSAGE of the gut tissue of a Vip3Aaâ€resistantHeliothis virescens(Lepidoptera: Noctuidae) strain provides insights into the basis of resistance. Insect Science, 2019, 26, 479-498.	1.5	5
64	Distribution of CRa in clubroot resistance (CR) cultivars of Chinese cabbage. Plant Biotechnology, 2013, 30, 393-397.	0.5	5
65	SuperSAGE: The Most Advanced Transcriptome Technology for Functional Genomics. , 0, , 37-54.		4
66	Development of plants resistant to <i>Papaya leaf distortion mosaic virus</i> by intergeneric hybridization between <i>Carica papaya</i> and <i>Vasconcellea cundinamarcensis</i> . Breeding Science, 2016, 66, 734-741.	0.9	4
67	SuperSAGE as an Analytical Tool for Host and Viral Gene Expression. Methods in Molecular Biology, 2015, 1236, 181-195.	0.4	4
68	A Novel MAPKK Involved in Cell Death and Defense Signaling. Plant Signaling and Behavior, 2007, 2, 396-398.	1.2	3
69	Expression of a Nicotiana tabacum pathogen-induced gene is involved in the susceptibility to black shank. Functional Plant Biology, 2016, 43, 534.	1.1	3
70	Development of PCR-based marker for resistance to Fusarium wilt race 2 in lettuce (Lactuca sativa L.). Euphytica, 2021, 217, 1.	0.6	3
71	Genome Sequence of Bitter Gourd and Its Comparative Study with Other Cucurbitaceae Genomes. Compendium of Plant Genomes, 2020, , 113-123.	0.3	3
72	Whole genome sequencing and future breeding of rice. Journal of Plant Biochemistry and	0.9	2

HIDEO MATSUMURA

Whole genome sequencing and f Biotechnology, 2012, 21, 10-14.

#	Article	IF	CITATIONS
73	Molecular Cloning of Rice Lactate Dehydrogenase cDNA Breeding Science, 1993, 43, 129-133.	0.2	2
74	Genomic characterization of a rare Carica papaya X chromosome mutant reveals a candidate monodehydroascorbate reductase 4 gene involved in all-hermaphrodite phenomenon. Molecular Genetics and Genomics, 2021, 296, 1323-1335.	1.0	2
75	Production of backcross plants between intergeneric hybrids (<i>Carica papaya</i> × <i>Vasconcellea) Tj mosaic virus</i> resistance. Ikushugaku Kenkyu, 2018, 20, 115-123.	ETQq1 1 0.1	0.784314 rg 1
76	Use of Serial Analysis of Gene Expression (Sage) for Transcript Profiling in Plants. , 2007, , 227-244.		1
77	Reply to Renner: Meticulous investigation, not sequencing effort, leads to robust conclusion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24632-24633.	3.3	0
78	SAGE (Serial Analysis of Gene Expression) in Magnaporthe Grisea. , 2004, , 23-28.		0
79	SuperSAGE: A complete genome-wide quantitative expression profiling platform. , 0, 2008, .		0
80	Glimpse on Genomics and Breeding in Bitter Gourd: A Crop of the Future for Food, Nutrition and Health Security. Compendium of Plant Genomes, 2020, , 1-6.	0.3	0
81	Future Prospects of Genomics and Breeding in Bitter Gourd. Compendium of Plant Genomes, 2020, , 133-135.	0.3	0
82	Molecular Linkage Mapping in Bitter Gourd. Compendium of Plant Genomes, 2020, , 105-111.	0.3	0