List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/95026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Propagation of Bursting Oscillations in Coupled Non-homogeneous Hodgkin–Huxley Reaction–Diffusion Systems. Differential Equations and Dynamical Systems, 2021, 29, 841-855.	0.5	2
2	Opinion Diffusion in Two-Layer Interconnected Networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 3772-3783.	3.5	10
3	On a Coupled Time-Dependent SIR Models Fitting with New York and New-Jersey States COVID-19 Data. Biology, 2020, 9, 135.	1.3	17
4	Mathematical assessment of the role of environmental factors on the dynamical transmission of cholera. Communications in Nonlinear Science and Numerical Simulation, 2019, 67, 203-222.	1.7	9
5	Large-time dynamics in complex networks of reaction–diffusion systems applied to a panic model. IMA Journal of Applied Mathematics, 2019, 84, 974-1000.	0.8	4
6	Diffusion dynamics of a conductance-based neuronal population. Physical Review E, 2019, 99, 042307.	0.8	13
7	Dynamics Analysis and Optimality in Selective Harvesting Predator-Prey Model With Modified Leslie-Gower and Holling-Type <i>II</i> . Nonautonomous Dynamical Systems, 2019, 6, 1-17.	0.3	15
8	Large time behaviour and synchronization of complex networks of reaction–diffusion systems of FitzHugh–Nagumo type. IMA Journal of Applied Mathematics, 2019, 84, 416-443.	0.8	16
9	Tutte Polynomials of Two Self-similar Network Models. Journal of Statistical Physics, 2019, 174, 893-905.	0.5	6
10	Canard phenomenon in a slow-fast modified Leslie–Gower model. Mathematical Biosciences, 2018, 295, 48-54.	0.9	26
11	PREDATOR–PREY DYNAMICS WITH SEASONAL WATER-LEVEL FLUCTUATIONS. Journal of Biological Systems, 2018, 26, 495-510.	0.5	2
12	Permanence and Extinction of a Diffusive Predator–Prey Model with Robin Boundary Conditions. Acta Biotheoretica, 2018, 66, 367-378.	0.7	1
13	Turing Instability and Hopf Bifurcation in a Modified Leslie–Gower Predator–Prey Model with Cross-Diffusion. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2018, 28, 1850089.	0.7	19
14	Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete and Continuous Dynamical Systems - Series B, 2018, 23, 3787-3797.	0.5	5
15	The Effect of non-Selective Harvesting in Predator-Prey ModelWith Modified Leslie-Gower and Holling Type II Shemes. Discontinuity, Nonlinearity, and Complexity, 2018, 7, 413-427.	0.1	1
16	Knowledge diffusion in complex networks. Concurrency Computation Practice and Experience, 2017, 29, e3791.	1.4	14
17	Synchronization analysis through coupling mechanism in realistic neural models. Applied Mathematical Modelling, 2017, 44, 557-575.	2.2	3
18	Chaos in Fractional Order Cubic Chua System and Synchronization. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750161.	0.7	32

#	Article	IF	CITATIONS
19	A network model for control of dengue epidemic using sterile insect technique. Mathematical Biosciences and Engineering, 2017, 15, 441-460.	1.0	19
20	Synchronization for networks of coupled non-linear systems with external disturbances. IMA Journal of Mathematical Control and Information, 2016, 33, 191-207.	1.1	2
21	Mathematical Modeling of Human Behaviors During Catastrophic Events: Stability and Bifurcations. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1630025.	0.7	13
22	Basin of Attraction of Solutions with Pattern Formation in Slow–Fast Reaction–Diffusion Systems. Acta Biotheoretica, 2016, 64, 311-325.	0.7	2
23	Sinusoidal disturbance induced topology identification of Hindmarsh-Rose neural networks. Science China Information Sciences, 2016, 59, 1.	2.7	10
24	Targeting the quiescent cells in cancer chemotherapy treatment: Is it enough?. Applied Mathematical Modelling, 2016, 40, 4844-4858.	2.2	3
25	Global Dynamics of a Three Species Predator-Prey Competition Model with Holling type II Functional Response on a Circular Domain. Journal of Applied Nonlinear Dynamics, 2016, 5, 93-104.	0.1	2
26	Bifurcation Analysis and Optimal Harvesting of a Delayed Predator–Prey Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550012.	0.7	3
27	A new piecewise linear Chen system of fractional-order: Numerical approximation of stable attractors. Chinese Physics B, 2015, 24, 060507.	0.7	6
28	Diffusion driven instability and Hopf bifurcation in spatial predator-prey model on a circular domain. Applied Mathematics and Computation, 2015, 260, 292-313.	1.4	24
29	Bifurcation and Stability in a Delayed Predator–Prey Model with Mixed Functional Responses. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1540014.	0.7	7
30	Instability and Pattern Formation in Three-Species Food Chain Model via Holling Type II Functional Response on a Circular Domain. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550092.	0.7	15
31	Qualitative properties and hopf bifurcation in haematopoietic disease model with chemotherapy. MATEC Web of Conferences, 2014, 16, 10007.	0.1	0
32	Modeling, Stability, Synchronization, and Chaos and Their Applications to Complex Systems. Abstract and Applied Analysis, 2014, 2014, 1-2.	0.3	4
33	Emergence of cooperation in non-scale-free networks. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 225003.	0.7	6
34	Weakly coupled two-slow–two-fast systems, folded singularities and mixed mode oscillations. Nonlinearity, 2014, 27, 1555-1574.	0.6	22
35	Local Nash Equilibrium in Social Networks. Scientific Reports, 2014, 4, 6224.	1.6	13
36	Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model. Chaos, 2013, 23, 033125.	1.0	52

#	Article	IF	CITATIONS
37	Fence-sitters protect cooperation in complex networks. Physical Review E, 2013, 88, 032127.	0.8	4
38	Optimal intervention strategies for tuberculosis. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 1441-1453.	1.7	23
39	Existence of periodic travelling waves solutions in predator prey model with diffusion. Applied Mathematical Modelling, 2013, 37, 3635-3644.	2.2	18
40	MODELING THE DYNAMICS OF COMPLEX INTERACTION SYSTEMS: FROM MORPHOGENESIS TO CONTROL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250025.	0.7	11
41	Cluster synchronization analysis of complex dynamical networks by input-to-state stability. Nonlinear Dynamics, 2012, 70, 1107-1115.	2.7	18
42	Synchronization and control of coupled reaction–diffusion systems of the FitzHugh–Nagumo type. Computers and Mathematics With Applications, 2012, 64, 934-943.	1.4	58
43	Effective Fokker-Planck equation for birhythmic modified van der Pol oscillator. Chaos, 2012, 22, 043114.	1.0	28
44	Complex Networks Dynamics. MATEC Web of Conferences, 2012, 1, 07002.	0.1	0
45	Optimal control of chikungunya disease: Larvae reduction, treatment and prevention. Mathematical Biosciences and Engineering, 2012, 9, 369-392.	1.0	67
46	The chikungunya disease: Modeling, vector and transmission global dynamics. Mathematical Biosciences, 2011, 229, 50-63.	0.9	88
47	A multi-step differential transform method and application to non-chaotic or chaotic systems. Computers and Mathematics With Applications, 2010, 59, 1462-1472.	1.4	159
48	Global stability analysis of birhythmicity in a self-sustained oscillator. Chaos, 2010, 20, 013114.	1.0	33
49	SYNCHRONIZATION OF CHAOTIC FRACTIONAL-ORDER SYSTEMS VIA LINEAR CONTROL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 81-97.	0.7	109
50	Complex emergent properties in synchronized neuronal oscillations. Understanding Complex Systems, 2009, , 243-259.	0.3	5
51	Generating multi-scroll chaotic attractors by thresholding. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 3234-3239.	0.9	78
52	Persistence and global stability in a delayed Leslie–Gower type three species food chain. Journal of Mathematical Analysis and Applications, 2008, 340, 340-357.	0.5	50
53	STABILITY OF THE CONTROLLED SYNCHRONIZATION MANIFOLD IN A RING OF MUTUALLY COUPLED CHAOTIC SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 2397-2414.	0.7	0
54	Vibration analysis and bifurcations in the self-sustained electromechanical system with multiple functions. Communications in Nonlinear Science and Numerical Simulation, 2007, 12, 1534-1549.	1.7	14

#	Article	IF	CITATIONS
55	Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with time delay. Nonlinear Analysis: Real World Applications, 2006, 7, 1104-1118.	0.9	221
56	Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Applied Mathematics Letters, 2003, 16, 1069-1075.	1.5	418
57	ASYMPTOTIC ANALYSIS OF A NEW PIECEWISE-LINEAR CHAOTIC SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12, 147-157.	0.7	29
58	Analysis of the dynamics of a realistic ecological model. Chaos, Solitons and Fractals, 2002, 13, 95-107.	2.5	86
59	Should all the species of a food chain be counted to investigate the global dynamics?. Chaos, Solitons and Fractals, 2002, 13, 1099-1113.	2.5	32
60	Study of a Leslie–Gower-type tritrophic population model. Chaos, Solitons and Fractals, 2002, 14, 1275-1293.	2.5	166
61	Dynamics of a Hénon–Lozi-type map. Chaos, Solitons and Fractals, 2001, 12, 2323-2341.	2.5	40
62	DIFFERENTIAL EQUATIONS WITH MULTISPIRAL ATTRACTORS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999, 09, 1009-1039.	0.7	54