## James D Ward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9502182/publications.pdf Version: 2024-02-01



IAMES D WADD

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Advancing a toolkit of diverse futures approaches for global environmental assessments. Ecosystems and People, 2021, 17, 191-204.                                                        | 1.3 | 29        |
| 2  | Grand Challenges in Urban Agriculture: Ecological and Social Approaches to Transformative<br>Sustainability. Frontiers in Sustainable Food Systems, 2021, 5, .                           | 1.8 | 14        |
| 3  | Assessing Reliability of Recycled Water in Wicking Beds for Sustainable Urban Agriculture. Earth, 2021, 2, 468-484.                                                                      | 0.9 | 1         |
| 4  | Grounding global environmental assessments through bottom-up futures based on local practices and perspectives. Sustainability Science, 2021, 16, 1907-1922.                             | 2.5 | 22        |
| 5  | Projecting the global impact of fossil fuel production from the Former Soviet Union. International<br>Journal of Coal Science and Technology, 2021, 8, 1208-1226.                        | 2.7 | 7         |
| 6  | Experimental investigation of wicking bed irrigation using shallow-rooted crops grown under glasshouse conditions. Irrigation Science, 2020, 38, 117-129.                                | 1.3 | 5         |
| 7  | Going beyond Gross Domestic Product as an indicator to bring coherence to the Sustainable<br>Development Goals. Journal of Cleaner Production, 2020, 248, 119232.                        | 4.6 | 83        |
| 8  | Renewable Energy Equivalent Footprint (REEF): A Method for Envisioning a Sustainable Energy Future.<br>Energies, 2020, 13, 6160.                                                         | 1.6 | 6         |
| 9  | End-of-Pipe Horticultural Reuse of Recirculating Aquaculture System Effluent: Comparing the<br>Hydro-Economics of Two Horticulture Systems. Water (Switzerland), 2020, 12, 1409.         | 1.2 | 3         |
| 10 | Productivity, resource efficiency and financial savings: An investigation of the current capabilities and potential of South Australian home food gardens. PLoS ONE, 2020, 15, e0230232. | 1.1 | 22        |
| 11 | A Statistically Rigorous Approach to Experimental Design of Vertical Living Walls for Green<br>Buildings. Urban Science, 2019, 3, 71.                                                    | 1.1 | 8         |
| 12 | A Comparison of Plant Growth Rates between an NFT Hydroponic System and an NFT Aquaponic System.<br>Horticulturae, 2019, 5, 27.                                                          | 1.2 | 23        |
| 13 | The Role of Green Roofs and Living Walls as WSUD Approaches in a Dry Climate. , 2019, , 409-430.                                                                                         |     | 3         |
| 14 | Blue-Green Water Nexus in Aquaculture for Resilience to Climate Change. Reviews in Fisheries Science and Aquaculture, 2018, 26, 139-154.                                                 | 5.1 | 13        |
| 15 | Beyond Productivity: Considering the Health, Social Value and Happiness of Home and Community<br>Food Gardens. Urban Science, 2018, 2, 97.                                               | 1.1 | 23        |
| 16 | Vertical greenery systems: A systematic review of research trends. Building and Environment, 2018, 146, 226-237.                                                                         | 3.0 | 95        |
| 17 | A Semi-Systematic Review of Capillary Irrigation: The Benefits, Limitations, and Opportunities.<br>Horticulturae, 2018, 4, 23.                                                           | 1.2 | 26        |
| 18 | Water Use Efficiency in Urban Food Gardens: Insights from a Systematic Review and Case Study.<br>Horticulturae, 2018, 4, 27.                                                             | 1.2 | 9         |

JAMES D WARD

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Typically Diverse: The Nature of Urban Agriculture in South Australia. Sustainability, 2018, 10, 945.                                                                                                              | 1.6 | 13        |
| 20 | Optimising Crop Selection for Small Urban Food Gardens in Dry Climates. Horticulturae, 2017, 3, 33.                                                                                                                | 1.2 | 8         |
| 21 | Aquaponics in Urban Agriculture: Social Acceptance and Urban Food Planning. Horticulturae, 2017, 3, 39.                                                                                                            | 1.2 | 18        |
| 22 | Evaluating the Efficiency of Wicking Bed Irrigation Systems for Small-Scale Urban Agriculture.<br>Horticulturae, 2016, 2, 13.                                                                                      | 1.2 | 14        |
| 23 | Is Decoupling GDP Growth from Environmental Impact Possible?. PLoS ONE, 2016, 11, e0164733.                                                                                                                        | 1.1 | 292       |
| 24 | A Revised Brackish Water Aquifer Storage and Recovery (ASR) Site Selection Index for Water<br>Resources Management. Water Resources Management, 2016, 30, 2465-2481.                                               | 1.9 | 19        |
| 25 | Can urban agriculture usefully improve food resilience? Insights from a linear programming approach. Journal of Environmental Studies and Sciences, 2015, 5, 699-711.                                              | 0.9 | 9         |
| 26 | Projection of Iron Ore Production. Natural Resources Research, 2015, 24, 317-327.                                                                                                                                  | 2.2 | 20        |
| 27 | Improving the performance of Ground Coupled Heat Exchangers in unsaturated soils. Energy and Buildings, 2015, 104, 323-335.                                                                                        | 3.1 | 25        |
| 28 | Projection of world fossil fuels by country. Fuel, 2015, 141, 120-135.                                                                                                                                             | 3.4 | 445       |
| 29 | Towards a rational sustainability framework. Sustainability Science, 2015, 10, 515-520.                                                                                                                            | 2.5 | 4         |
| 30 | Optimising diet decisions and urban agriculture using linear programming. Food Security, 2014, 6, 701-718.                                                                                                         | 2.4 | 26        |
| 31 | Helium Production and Possible Projection. Minerals (Basel, Switzerland), 2014, 4, 130-144.                                                                                                                        | 0.8 | 18        |
| 32 | Can integrated aquaculture-agriculture (IAA) produce "more crop per drop�. Food Security, 2014, 6,<br>767-779.                                                                                                     | 2.4 | 48        |
| 33 | High estimates of supply constrained emissions scenarios for long-term climate risk assessment.<br>Energy Policy, 2012, 51, 598-604.                                                                               | 4.2 | 27        |
| 34 | Vulnerability Indicators of Sea Water Intrusion. Ground Water, 2012, 50, 48-58.                                                                                                                                    | 0.7 | 159       |
| 35 | Comment on Fossil-fuel constraints on global warming by A. Zecca and L. Chiari [Energy Policy 38<br>(2010) 1–3]. Energy Policy, 2011, 39, 7464-7466.                                                               | 4.2 | 6         |
| 36 | Current Practice and Future Challenges in Coastal Aquifer Management: Flux-Based and Trigger-Level<br>Approaches with Application to an Australian Case Study. Water Resources Management, 2011, 25,<br>1831-1853. | 1.9 | 68        |

JAMES D WARD

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of transient solute loading on free convection in porous media. Water Resources Research, 2010, 46, .                                                                                                                    | 1.7 | 25        |
| 38 | Integrated assessment of lateral flow, density effects and dispersion in aquifer storage and recovery.<br>Journal of Hydrology, 2009, 370, 83-99.                                                                               | 2.3 | 80        |
| 39 | Insights from a pseudospectral approach to the Elder problem. Water Resources Research, 2009, 45, .                                                                                                                             | 1.7 | 33        |
| 40 | Variable-density modelling of multiple-cycle aquifer storage and recovery (ASR): Importance of anisotropy and layered heterogeneity in brackish aquifers. Journal of Hydrology, 2008, 356, 93-105.                              | 2.3 | 45        |
| 41 | Improving the worthiness of the Elder problem as a benchmark for buoyancy driven convection models. Nature Precedings, 2008, , .                                                                                                | 0.1 | 0         |
| 42 | A theoretical analysis of mixed convection in aquifer storage and recovery: How important are density effects?. Journal of Hydrology, 2007, 343, 169-186.                                                                       | 2.3 | 66        |
| 43 | On variable density surface water–groundwater interaction: A theoretical analysis of mixed convection in a stably-stratified fresh surface water – saline groundwater discharge zone. Journal of Hydrology, 2006, 329, 390-402. | 2.3 | 22        |