Mindy Levine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9502153/publications.pdf

Version: 2024-02-01

76 papers

2,000 citations

20 h-index 265206 42 g-index

84 all docs 84 docs citations

times ranked

84

2492 citing authors

#	Article	IF	CITATIONS
1	Supramolecular Luminescent Sensors. Chemical Reviews, 2019, 119, 322-477.	47.7	520
2	Biomimetic Catalysis. ACS Catalysis, 2011, 1, 1090-1118.	11.2	217
3	Amplification of enantiomeric concentrations under credible prebiotic conditions. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12979-12980.	7.1	130
4	Age and Family History at Presentation of Pediatric Inflammatory Bowel Disease. Journal of Pediatric Gastroenterology and Nutrition, 2003, 37, 609-613.	1.8	60
5	Addressing the STEM Gender Gap by Designing and Implementing an Educational Outreach Chemistry Camp for Middle School Girls. Journal of Chemical Education, 2015, 92, 1639-1644.	2.3	55
6	Enantioselective Synthesis and Enantiomeric Amplification of Amino Acids under Prebiotic Conditions. Organic Letters, 2008, 10, 2433-2436.	4.6	53
7	Array-based detection of persistent organic pollutants <i>via</i> cyclodextrin promoted energy transfer. Chemical Communications, 2015, 51, 11615-11618.	4.1	43
8	Ultrasensitive Detection of Nitrite through Implementation of $\langle i \rangle N < i \rangle - (1-Naphthyl)$ ethylenediamine-Grafted Cellulose into a Paper-Based Device. ACS Sensors, 2020, 5, 1207-1215.	7.8	39
9	Efficient detection of polycyclic aromatic hydrocarbons and polychlorinated biphenyls via three-component energy transfer. Chemical Communications, 2013, 49, 4821.	4.1	37
10	Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Frontiers in Chemistry, 2021, 9, 616815.	3.6	36
11	Sensitive and selective detection of cesium via fluorescence quenching. Dalton Transactions, 2013, 42, 16276.	3.3	34
12	Water Exclusion and Enantioselectivity in Catalysis. ChemBioChem, 2006, 7, 1491-1496.	2.6	32
13	Imitating Prebiotic Homochirality on Earth. Origins of Life and Evolution of Biospheres, 2010, 40, 11-26.	1.9	30
14	Cyclodextrin-Enhanced Extraction and Energy Transfer of Carcinogens in Complex Oil Environments. ACS Applied Materials & Samp; Interfaces, 2013, 5, 11951-11957.	8.0	26
15	Selective detection of non-aromatic pesticides via cyclodextrin-promoted fluorescence modulation. New Journal of Chemistry, 2016, 40, 789-793.	2.8	24
16	Fluorescent detection of polycyclic aromatic hydrocarbons in ternary cyclodextrin complexes. Supramolecular Chemistry, 2012, 24, 743-747.	1.2	23
17	Highly efficient quenching of nanoparticles for the detection of electron-deficient nitroaromatics. Journal of Polymer Science Part A, 2013, 51, 4150-4155.	2.3	22
18	Detection of Organochlorine Pesticides in Contaminated Marine Environments via Cyclodextrin-Promoted Fluorescence Modulation. ACS Omega, 2017, 2, 8591-8599.	3. 5	22

#	Article	IF	CITATION
19	Photoluminescent energy transfer from poly(phenyleneethynylene)s to nearâ€infrared emitting fluorophores. Journal of Polymer Science Part A, 2010, 48, 3382-3391.	2.3	21
20	Cyclodextrin-promoted energy transfer for broadly applicable small-molecule detection. Supramolecular Chemistry, 2014, 26, 714-721.	1.2	21
21	Highly efficient detection of hydrogen peroxide in solution and in the vapor phase via fluorescence quenching. Chemical Communications, 2015, 51, 7061-7064.	4.1	21
22	Sweet, Sweet Science: Addressing the Gender Gap in STEM Disciplines through a One-Day High School Program in Sugar Chemistry. Journal of Chemical Education, 2018, 95, 1316-1322.	2.3	21
23	Efficient extraction and detection of aromatic toxicants from crude oil and tar balls using multiple cyclodextrin derivatives. Marine Pollution Bulletin, 2015, 95, 242-247.	5.0	19
24	Detection of Medium-Sized Polycyclic Aromatic Hydrocarbons via Fluorescence Energy Transfer. Polycyclic Aromatic Compounds, 2014, 34, 561-572.	2.6	18
25	Environmental Application of Cyclodextrin Metal–Organic Frameworks in an Undergraduate Teaching Laboratory. Journal of Chemical Education, 2018, 95, 1636-1641.	2.3	18
26	Rapid and efficient pesticide detection via cyclodextrin-promoted energy transfer. Analyst, The, 2015, 140, 7503-7507.	3.5	17
27	Fabrication of poly (4,4′-oxybisbenzenamine) and its conjugated copolymers initiated by easily accessible carbon dots. European Polymer Journal, 2018, 109, 153-161.	5.4	17
28	Detection of bisphenol A and derivatives in human urine <i>via</i> cyclodextrin-promoted fluorescence modulation. Analytical Methods, 2018, 10, 3783-3790.	2.7	17
29	Paper-based manganese and \hat{l}^2 -cyclodextrin sensors for colorimetric sulfur dioxide detection. Analytica Chimica Acta, 2022, 1200, 339629.	5.4	17
30	Synthesis and catalytic properties of diverse chiral polyamines. Tetrahedron Letters, 2008, 49, 5746-5750.	1.4	16
31	Sensitive and selective detection of alcohols via fluorescence modulation. Supramolecular Chemistry, 2016, 28, 881-891.	1.2	16
32	Highly sensitive detection of cobalt through fluorescence changes in \hat{l}^2 -cyclodextrin-bimane complexes. Chemical Communications, 2020, 56, 12126-12129.	4.1	16
33	Partial transfer of enantioselective chiralities from α-methylated amino acids, known to be of meteoritic origin, into normal amino acids. Tetrahedron Letters, 2006, 47, 1809-1812.	1.4	15
34	Synthesis of a Near-Infrared Emitting Squaraine Dye in an Undergraduate Organic Laboratory. Journal of Chemical Education, 2012, 89, 1186-1189.	2.3	15
35	Highly efficient non-covalent energy transfer in all-organic macrocycles. Chemical Communications, 2013, 49, 8259.	4.1	15
36	Turn-on detection of pesticides via reversible fluorescence enhancement of conjugated polymer nanoparticles and thin films. New Journal of Chemistry, 2016, 40, 7273-7277.	2.8	15

#	Article	IF	CITATIONS
37	A highly versatile fluorenone-based macrocycle for the sensitive detection of polycyclic aromatic hydrocarbons and fluoride anions. RSC Advances, 2017, 7, 28489-28493.	3.6	15
38	Synthetic βâ€Cyclodextrin Dimers for Squaraine Binding: Effect of Host Architecture on Photophysical Properties, Aggregate Formation and Chemical Reactivity. European Journal of Organic Chemistry, 2018, 2018, 1964-1974.	2.4	15
39	Investigation of the Adulteration of Essential Oils by GC-MS. Current Analytical Chemistry, 2020, 16, 965-969.	1.2	15
40	Thermogravimetric analysis of aromatic boronic acids for potential flame retardant applications. Thermochimica Acta, 2020, 683, 178476.	2.7	13
41	Efficient fluorescence detection of aromatic toxicants and toxicant metabolites in human breast milk. Supramolecular Chemistry, 2018, 30, 267-277.	1.2	12
42	2-Hydroxypropyl beta-cyclodextrin for the enhanced performance of dual function extraction and detection systems in complex oil environments. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2015, 81, 341-346.	1.6	11
43	Detection of Benzene and Alkylated Benzene Derivatives in Fuel Contaminated Environments. Clean - Soil, Air, Water, 2016, 44, 1621-1627.	1.1	11
44	A green bromination method for the synthesis of benzylic dibromides. Tetrahedron Letters, 2014, 55, 4905-4908.	1.4	10
45	Cyclodextrin-promoted Diels Alder reactions of a polycyclic aromatic hydrocarbon under mild reaction conditions. Tetrahedron Letters, 2015, 56, 1619-1623.	1.4	10
46	Cyclodextrin-Promoted Detection of Aromatic Toxicants and Toxicant Metabolites in Urine. Analytical Chemistry Letters, 2016, 6, 345-353.	1.0	10
47	Environmentally friendly procedure for the aqueous oxidation of benzyl alcohols to aldehydes with dibromodimethylhydantoin (DBDMH) and cyclodextrin: Scope and mechanistic insights. Synthetic Communications, 2016, 46, 636-644.	2.1	10
48	Colorimetric Detection of Aliphatic Alcohols in \hat{l}^2 -Cyclodextrin Solutions. ACS Omega, 2019, 4, 18361-18369.	3.5	10
49	Synthesis of a Fluorescent Conjugated Polymer in the Undergraduate Organic Teaching Laboratory. Journal of Chemical Education, 2013, 90, 1376-1379.	2.3	9
50	Enhanced Characterization of Pyrene Binding in Mixed Cyclodextrin Systems via Fluorescence Spectroscopy. Journal of Fluorescence, 2020, 30, 1015-1023.	2.5	9
51	Array-based detection of isomeric and analogous analytes employing synthetically modified fluorophore attached \hat{l}^2 -cyclodextrin derivatives. New Journal of Chemistry, 2017, 41, 14431-14437.	2.8	8
52	Towards Rational Chemosensor Design through Improved Understanding of Experimental Parameter Variation and Tolerance in Cyclodextrin-Promoted Fluorescence Detection. Chemosensors, 2017, 5, 34.	3.6	8
53	Facile Iodine Detection via Fluorescence Quenching of βâ€Cyclodextrin:Bimaneâ€Ditriazole Inclusion Complexes. Israel Journal of Chemistry, 2021, 61, 253-260.	2.3	8
54	Rationally Designed Supramolecular Organic Hosts for Benzo[<i>a</i>]pyrene Binding and Detection. European Journal of Organic Chemistry, 2015, 2015, 6194-6204.	2.4	7

#	Article	IF	CITATIONS
55	Solvent effects in the extraction and detection of polycyclic aromatic hydrocarbons from complex oils in complex environments. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 84, 61-70.	1.6	7
56	Design, Implementation, and Evaluation of Paper-Based Devices for the Detection of Acetaminophen and Phenacetin in an Advanced Undergraduate Laboratory. Journal of Chemical Education, 2019, 96, 1719-1726.	2.3	7
57	Colorimetric detection of polycyclic aromatic hydrocarbons using supramolecular cyclodextrin dimer-squaraine constructs. Supramolecular Chemistry, 2019, 31, 211-219.	1.2	7
58	A dipodal bimane–ditriazole–diCu(<scp>ii</scp>) complex serves as an ultrasensitive water sensor. Chemical Communications, 2022, 58, 2690-2693.	4.1	7
59	Cyclodextrin-Promoted Fluorescence Detection of Aromatic Toxicants and Toxicant Metabolites in Commercial Milk Products. Food Analytical Methods, 2018, 11, 2419-2430.	2.6	6
60	Efficient Detection of Phthalate Esters in Human Saliva via Fluorescence Spectroscopy. Analytical Letters, 2019, 52, 479-495.	1.8	6
61	Identification of 15 Phthalate Esters in Commercial Cheese Powder via Cyclodextrin-Promoted Fluorescence Detection. ACS Omega, 2019, 4, 17009-17015.	3.5	6
62	A polycationic pillar[5] arene for the binding and removal of organic toxicants from aqueous media. Supramolecular Chemistry, 2019, 31, 545-557.	1.2	6
63	Efficient Detection and Removal of Polycyclic Aromatic Hydrocarbons Using Cyclodextrinâ€Modified Cellulose. ChemPlusChem, 2020, 85, 1730-1736.	2.8	4
64	Detection of anabolic steroidsviacyclodextrin-promoted fluorescence modulation. RSC Advances, 2020, 10, 25108-25115.	3.6	4
65	Highly Sensitive Water Detection Through Reversible Fluorescence Changes in a syn-Bimane Based Boronic Acid Derivative. Frontiers in Chemistry, 2021, 9, 782481.	3.6	4
66	Two polymorphs of 1,8-dichloroanthracene. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 199-203.	0.4	3
67	Novel Fluorescent Fluorene-Containing Conjugated Polymers: Synthesis, Photophysical Properties, and Application for the Detection of Common Bisphenols. Synlett, 2018, 29, 2515-2522.	1.8	3
68	Fluorescence-Based Detection of Benzene, Toluene, Ethylbenzene, Xylene, and Cumene (BTEXC) Compounds in Fuel-Contaminated Snow Environments. Chemosensors, 2019, 7, 5.	3.6	3
69	Use of $\hat{I}\pm$ -cyclodextrin to Promote Clean and Environmentally Friendly Disinfection of Phenolic Substrates via Chlorine Dioxide Treatment. Frontiers in Chemistry, 2020, 8, 641.	3.6	3
70	Sonication-Induced, Solvent-Selective Gelation of a 1,8-Napthalimide-Conjugated Amide: Structural Insights and Pollutant Removal Applications. ACS Omega, 2021, 6, 32722-32729.	3.5	3
71	Chiral cationic polyamines for chiral microcapsules and siRNA delivery. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5919-5922.	2.2	2
72	Detection of Potentially Toxic Additives in Electronic Cigarettes and Cigarette Flavourings. Analytical Letters, 2020, 53, 1407-1415.	1.8	2

MINDY LEVINE

#	Article	IF	CITATION
73	Detection of Human Growth Hormone (hGH) via Cyclodextrin-Promoted Fluorescence Modulation. Analytical Letters, 2021, 54, 1871-1880.	1.8	2
74	Effects of Structural Variation in Conjugated Side Chains on the Photophysics of Conjugated Polymers in Nanoparticles. Journal of Physical Chemistry B, 2019, 123, 4604-4610.	2.6	1
75	Ronald C.D. Breslow (1931–2017): A career in review. Bioorganic Chemistry, 2021, 115, 104868.	4.1	1
76	Fluorophores, Fluorescent Polymers, and Energy Transfer in an Undergraduate Laboratory Setting. ACS Symposium Series, 2012, , 27-49.	0.5	0