
Qing-Wen Gui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9502116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visible-light-initiated tandem synthesis of difluoromethylated oxindoles in 2-MeTHF under additive-, metal catalyst-, external photosensitizer-free and mild conditions. Chinese Chemical Letters, 2021, 32, 1907-1910.	9.0	100
2	Synthesis of Oxindoles through Silver atalyzed Trifluoromethylation–, Difluoromethylation– and Arylsulfonylation–Cyclization Reaction of <i>N</i> â€Arylacrylamides. European Journal of Organic Chemistry, 2014, 2014, 3196-3202.	2.4	94
3	Sustainable electrochemical cross-dehydrogenative coupling of 4-quinolones and diorganyl diselenides. Chinese Journal of Catalysis, 2021, 42, 1445-1450.	14.0	86
4	Stereoselective synthesis of vinylphosphonates and phosphine oxides via silver-catalyzed phosphorylation of styrenes. Chemical Communications, 2015, 51, 13922-13924.	4.1	68
5	The clean preparation of multisubstituted pyrroles under metal- and solvent-free conditions. Green Chemistry, 2020, 22, 118-122.	9.0	68
6	Practical and sustainable approach for clean preparation of 5-organylselanyl uracils. Chinese Chemical Letters, 2021, 32, 475-479.	9.0	66
7	Copperâ€Mediated <i>ortho</i> â€Nitration of Arene and Heteroarene CH Bonds Assisted by an 8â€Aminoquinoline Directing Group. Advanced Synthesis and Catalysis, 2015, 357, 732-738.	4.3	61
8	Highly mono-selective <i>ortho</i> -methylthiolation of benzamides <i>via</i> cobalt-catalyzed sp ² C–H activation. Organic Chemistry Frontiers, 2018, 5, 216-221.	4.5	49
9	Cobalt-promoted selective arylation of benzamides and acrylamides with arylboronic acids. Organic and Biomolecular Chemistry, 2016, 14, 11070-11075.	2.8	48
10	Four-component synthesis of 3-aminomethylated imidazoheterocycles in EtOH under catalyst-free, oxidant-free and mild conditions. Green Chemistry, 2021, 23, 4430-4434.	9.0	48
11	Copperâ€Mediated <i>ortho</i> â€Arylation of Benzamides with Arylboronic Acid. Advanced Synthesis and Catalysis, 2016, 358, 509-514.	4.3	43
12	Photocatalytic/Cuâ€Promoted Câ^'H Activations: Visibleâ€lightâ€Induced <i>ortho</i> â€Selective Perfluoroalkylation of Benzamides. Chemistry - A European Journal, 2016, 22, 6218-6222.	3.3	43
13	Visibleâ€Light Photosynthesis of CHF ₂ /CClF ₂ /CBrF ₂ ‣ubstituted Ringâ€fused Quinazolinones in Dimethyl Carbonate. Chemistry - an Asian Journal, 2022, 17, .	3.3	42
14	HOTf-Catalyzed, Solvent-Free Oxyarylation of Ynol Ethers and Thioethers. Journal of Organic Chemistry, 2016, 81, 4861-4868.	3.2	40
15	TBAI-catalyzed selective synthesis of sulfonamides and β-aryl sulfonyl enamines: coupling of arenesulfonyl chlorides and sodium sulfinates with <i>tert</i> amines. Organic and Biomolecular Chemistry, 2019, 17, 2715-2720.	2.8	40
16	Ultrasound-assisted tandem synthesis of tri- and tetra-substituted pyrrole-2-carbonitriles from alkenes, TMSCN and N,N-disubstituted formamides. Chinese Chemical Letters, 2020, 31, 3241-3244.	9.0	37
17	Electrochemical Synthesis of α-Ketoamides under Catalyst-, Oxidant-, and Electrolyte-Free Conditions. Organic Letters, 2020, 22, 2206-2209.	4.6	37
18	Synthesis of Vinylsulfones Via Palladium-Catalyzed Decarboxylative Coupling of Cinnamic Acids with Aromatic Sulfinic Acid Sodium Salts. Catalysis Letters, 2014, 144, 1377-1383.	2.6	35

QING-WEN GUI

#	Article	IF	CITATIONS
19	<i>E</i> -Selective synthesis of vinyl sulfones <i>via</i> silver-catalyzed sulfonylation of styrenes. Organic and Biomolecular Chemistry, 2018, 16, 5748-5751.	2.8	33
20	Chemical pre-reduction and electro-reduction guided preparation of a porous graphene bionanocomposite for indole-3-acetic acid detection. Nanoscale, 2019, 11, 962-967.	5.6	26
21	Synthesis of Phenanthridin-6(5H)-ones via Copper-Catalyzed Cyclization of 2-Phenylbenzamides. Synlett, 2013, 24, 1016-1020.	1.8	25
22	Synthesis of N-alkyl isatins via oxidative cyclization of N-alkyl 2-bromo(chloro)acetanilides. Organic and Biomolecular Chemistry, 2014, 12, 3349.	2.8	24
23	Synthesis of Oxindoles via Ironâ€Mediated Hydrometallation yclization of <i>N</i> â€Arylacrylamides. Asian Journal of Organic Chemistry, 2015, 4, 870-874.	2.7	19
24	Electrochemically-assisted deposition of toluidine blue-functionalized metal-organic framework films for electrochemical immunosensing of Indole-3-acetic acid. Journal of Electroanalytical Chemistry, 2021, 880, 114855.	3.8	19
25	Molecular iodine-catalyzed multicomponent synthesis of α-cyanopyrrolines with ambient air as the oxidant under neat conditions. Organic Chemistry Frontiers, 2020, 7, 4026-4030.	4.5	18
26	Synthesis of 2-Substituted Benzothiazoles from 1-Iodo-2-nitrobenzenes by a Copper-Catalyzed One-Pot Three-Component Reaction. Synthesis, 2013, 45, 943-951.	2.3	16
27	Enhanced electrocatalytic performance of platinum nanoparticles on thiolated polyaniline-multiwalled carbon nanotubes for methanol oxidation. RSC Advances, 2018, 8, 33742-33747.	3.6	15
28	Photoinduced efficient synthesis of cyanoalkylsulfonylated oxindoles <i>via</i> sulfur dioxide insertion. Organic and Biomolecular Chemistry, 2021, 19, 8929-8933.	2.8	15
29	Ultrasound accelerated synthesis of <i>O</i> -alkylated hydroximides under solvent- and metal-free conditions. Organic and Biomolecular Chemistry, 2019, 17, 10223-10227.	2.8	14
30	Synthesis of 2-Aryl Benzothiazoles via K2S2O8-Mediated Oxidative Condensation of Benzothiazoles with Benzylamines. Synlett, 2013, 24, 1549-1554.	1.8	13
31	Pd-Catalyzed Reduction of Aldehydes to Alcohols Using Formic Acid as the Hydrogen Donor. Synthetic Communications, 2014, 44, 280-288.	2.1	13
32	Ultrasound-Promoted and Base-Mediated Regioselective Bromination of Imidazo[1,2-a]pyridines with Pyridinium Tribromide. Synthesis, 2020, 52, 2713-2720.	2.3	13
33	Synthesis of Biaryls via Pd-Catalyzed Decarboxylative Coupling of Substituted Benzoic Acids with Phenylboronic Acids. Synthetic Communications, 2014, 44, 289-295.	2.1	12
34	Synthesis of 2-Acylated Indoles through Palladium-Catalyzed Dehydrogenative Coupling of N-Pyrimidine-Protected Indoles with Aldehydes and Ethyl Glyoxylate. Synlett, 2015, 26, 771-778.	1.8	12
35	Ultrasound-Assisted Iodination of Imidazo[1,2-α]pyridines Via C–H Functionalization Mediated by <i>tert</i> -Butyl Hydroperoxide. ACS Omega, 2021, 6, 25940-25949.	3.5	10
36	Synthesis of α -Nitro Ketoximes from Styrenes and <i>tert</i> -Butyl Nitrite. Synthetic Communications, 2015, 45, 2181-2187.	2.1	9

QING-WEN GUI

#	ARTICLE	IF	CITATIONS
37	Electrosynthesis of <i>S</i> -thiocarbamates with disulfides as a sulfur source. Chemical Communications, 2022, 58, 657-660.	4.1	9
38	Electrochemically promoted oxidative α-cyanation of tertiary and secondary amines using cheap AIBN. Organic and Biomolecular Chemistry, 2021, 19, 8254-8258.	2.8	7
39	Electrochemical synthesis of symmetrical benzidines through dehydrogenative cross-coupling reaction. Tetrahedron Letters, 2021, 70, 153021.	1.4	6
40	Diethylaminosulfur Trifluoride: A Novel, Low-Cost, Stable Double Thiolation Reagent for Imidazo[1,2-α]pyridines. ACS Omega, 2021, 6, 26273-26281.	3.5	6
41	An antifouling polymer for dynamic anti-protein adhesion analysis by a quartz crystal microbalance. Analyst, The, 2021, 146, 4636-4641.	3.5	5
42	One-Step Co-Electrodeposition of Copper Nanoparticles-Chitosan Film-Carbon Nanoparticles-Multiwalled Carbon Nanotubes Composite for Electroanalysis of Indole-3-Acetic Acid and Salicylic Acid. Sensors, 2022, 22, 4476.	3.8	4
43	Copper-catalyzed desymmetrization of prochiral 4,4-disubstituted cyclopentenes <i>via</i> a site-selective allylic oxidation: a concise total synthesis of untenone A. Chemical Communications, 2019, 55, 12368-12371.	4.1	3
44	Palladium-Catalyzed Allylation of \hat{l}± -Nitroacetates with Propynes. Synthetic Communications, 2014, 44, 3165-3172.	2.1	2
45	Cell-Specific Adhesion Interfaces by Electrochemical Copolymerization of Arg-Gly-Asp-Tyr and 4-(2-(2-Ethoxyethoxy) Ethoxy) Phenol. ACS Applied Polymer Materials, 2021, 3, 2553-2560.	4.4	2
46	Iodide Salt Mediated Synthesis of <i>β</i> â€Keto Sulfones Using Arylsulfonyl Chlorides as the Sulfur Sources. ChemistrySelect, 2022, 7, .	1.5	2
47	Synthesis of Seleno Oxindoles via Iodine-induced Radical Cyclization of N-arylacrylamides with Diorganyl Diselenides. Synthesis, 0, , .	2.3	1
48	Ultrasound accelerated expedient and eco-friendly synthesis of aryl sulfonates using I2 as catalyst at ambient conditions. Letters in Organic Chemistry, 2021, 18, .	0.5	0