Kaumeel Chokshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9501964/publications.pdf

Version: 2024-02-01

28 papers 2,260 citations

331259 21 h-index 552369 26 g-index

28 all docs 28 docs citations

times ranked

28

2346 citing authors

#	Article	IF	CITATIONS
1	Seaweed-based biostimulant improves photosynthesis and effectively enhances growth and biofuel potential of a green microalga Chlorella variabilis. Aquaculture International, 2021, 29, 963-975.	1.1	6
2	Physiological responses of the green microalga <i>Acutodesmus dimorphus</i> to temperature induced oxidative stress conditions. Physiologia Plantarum, 2020, 170, 462-473.	2.6	14
3	Microalgal Target of Rapamycin (TOR): A Central Regulatory Hub for Growth, Stress Response and Biomass Production. Plant and Cell Physiology, 2020, 61, 675-684.	1.5	11
4	Industrial Wastewater-Based Microalgal Biorefinery: A Dual Strategy to Remediate Waste and Produce Microalgal Bioproducts., 2019,, 173-193.		10
5	Accelerated triacylglycerol production without growth inhibition by overexpression of a glycerol-3-phosphate acyltransferase in the unicellular red alga Cyanidioschyzon merolae. Scientific Reports, 2018, 8, 12410.	1.6	51
6	Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresource Technology, 2017, 244, 1376-1383.	4.8	122
7	Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. Biotechnology for Biofuels, 2017, 10, 60.	6.2	157
8	Oxidative Stress-Induced Bioprospecting of Microalgae. , 2017, , 251-276.		2
9	Surface-Active Ionic Liquid Cholinium Dodecylbenzenesulfonate: Self-Assembling Behavior and Interaction with Cellulase. ACS Omega, 2017, 2, 7451-7460.	1.6	40
10	Cyanobacterial Pigments as Natural Anti-Hyperglycemic Agents: An In vitro Study. Frontiers in Marine Science, 2016, 3, .	1.2	27
11	Applications of de-oiled microalgal biomass towards development of sustainable biorefinery. Bioresource Technology, 2016, 214, 787-796.	4.8	77
12	Microalgal biomass generation by phycoremediation of dairy industry wastewater: An integrated approach towards sustainable biofuel production. Bioresource Technology, 2016, 221, 455-460.	4.8	144
13	Green synthesis, characterization and antioxidant potential of silver nanoparticles biosynthesized from de-oiled biomass of thermotolerant oleaginous microalgae Acutodesmus dimorphus. RSC Advances, 2016, 6, 72269-72274.	1.7	81
14	Solar driven mass cultivation and the extraction of lipids from Chlorella variabilis: A case study. Algal Research, 2016, 14, 137-142.	2.4	30
15	Hydrolysate of lipid extracted microalgal biomass residue: An algal growth promoter and enhancer. Bioresource Technology, 2016, 207, 197-204.	4.8	36
16	Microalgal carotenoids: Potential nutraceutical compounds with chemotaxonomic importance. Algal Research, 2016, 15, 24-31.	2.4	66
17	Growth medium standardization and thermotolerance study of the freshwater microalga Acutodesmus dimorphus—a potential strain for biofuel production. Journal of Applied Phycology, 2016, 28, 2687-2696.	1.5	18
18	Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production. Bioresource Technology, 2016, 204, 9-16.	4.8	53

#	Article	IF	CITATIONS
19	Enhanced biofuel production potential with nutritional stress amelioration through optimization of carbon source and light intensity in Scenedesmus sp. CCNM 1077. Bioresource Technology, 2015, 179, 565-572.	4.8	59
20	Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresource Technology, 2015, 180, 162-171.	4.8	132
21	Bicarbonate supplementation enhanced biofuel production potential as well as nutritional stress mitigation in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 2015, 193, 315-323.	4.8	96
22	Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 2015, 189, 341-348.	4.8	264
23	Selective carotenoid accumulation by varying nutrient media and salinity in Synechocystis sp. CCNM 2501. Bioresource Technology, 2015, 197, 363-368.	4.8	67
24	Dominance of cyanobacterial and cryptophytic assemblage correlated to CDOM at heavy metal contamination sites of Gujarat, India. Environmental Monitoring and Assessment, 2015, 187, 4118.	1.3	17
25	Lipid Extracted Microalgal Biomass Residue as a Fertilizer Substitute for Zea mays L Frontiers in Plant Science, 2015, 6, 1266.	1.7	49
26	Biosorption of Methylene Blue by De-Oiled Algal Biomass: Equilibrium, Kinetics and Artificial Neural Network Modelling. PLoS ONE, 2014, 9, e109545.	1.1	60
27	Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 2014, 156, 146-154.	4.8	363
28	Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – A potential strain for bio-fuel production. Bioresource Technology, 2014, 171, 367-374.	4.8	208