
Stefan P J Van Leeuwen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9501823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integrated Environmental Assessment and Management, 2011, 7, 513-541.	1.6	2,567
2	Distribution and Fate of HBCD and TBBPA Brominated Flame Retardants in North Sea Estuaries and Aquatic Food Webs. Environmental Science & Technology, 2004, 38, 5497-5504.	4.6	513
3	Presence of Emerging Per- and Polyfluoroalkyl Substances (PFASs) in River and Drinking Water near a Fluorochemical Production Plant in the Netherlands. Environmental Science & Technology, 2017, 51, 11057-11065.	4.6	279
4	Competitive Binding of Poly- and Perfluorinated Compounds to the Thyroid Hormone Transport Protein Transthyretin. Toxicological Sciences, 2009, 109, 206-216.	1.4	270
5	Peer Reviewed: Analytical Challenges Hamper Perfluoroalkyl Research. Environmental Science & Technology, 2004, 38, 248A-255A.	4.6	201
6	Levels of Perfluorinated Compounds in Food and Dietary Intake of PFOS and PFOA in The Netherlands. Journal of Agricultural and Food Chemistry, 2011, 59, 7496-7505.	2.4	201
7	Extraction and clean-up strategies for the analysis of poly- and perfluoroalkyl substances in environmental and human matrices. Journal of Chromatography A, 2007, 1153, 172-185.	1.8	156
8	Struggle for Quality in Determination of Perfluorinated Contaminants in Environmental and Human Samples. Environmental Science & Technology, 2006, 40, 7854-7860.	4.6	123
9	Halogenated Contaminants in Farmed Salmon, Trout, Tilapia, Pangasius, and Shrimp. Environmental Science & Technology, 2009, 43, 4009-4015.	4.6	109
10	Advances in the gas chromatographic determination of persistent organic pollutants in the aquatic environment. Journal of Chromatography A, 2008, 1186, 161-182.	1.8	108
11	Environmental contamination and human exposure to PFASs near a fluorochemical production plant: Review of historic and current PFOA and GenX contamination in the Netherlands. Environment International, 2020, 137, 105583.	4.8	100
12	Brominated flame retardants in fish and shellfish – levels and contribution of fish consumption to dietary exposure of Dutch citizens to HBCD. Molecular Nutrition and Food Research, 2008, 52, 194-203.	1.5	99
13	Significant improvements in the analysis of perfluorinated compounds in water and fish: Results from an interlaboratory method evaluation study. Journal of Chromatography A, 2009, 1216, 401-409.	1.8	94
14	Programming of metabolic effects in C57BL/6JxFVB mice by exposure to bisphenol A during gestation and lactation. Toxicology, 2014, 321, 40-52.	2.0	91
15	Dietary intake and risk evaluation of polybrominated diphenyl ethers in The Netherlands. Molecular Nutrition and Food Research, 2008, 52, 204-216.	1.5	89
16	Recent developments in trace analysis of poly- and perfluoroalkyl substances. Analytical and Bioanalytical Chemistry, 2011, 400, 1625-1635.	1.9	76
17	Dietary exposure to dioxins and dioxin-like PCBs in The Netherlands anno 2004. Regulatory Toxicology and Pharmacology, 2008, 51, 278-287.	1.3	73
18	Tetrahydrofuran–water extraction, in-line clean-up and selective liquid chromatography/tandem mass spectrometry for the quantitation of perfluorinated compounds in food at the low picogram per gram level. Journal of Chromatography A, 2010, 1217, 5913-5921.	1.8	70

STEFAN PJ VAN LEEUWEN

#	Article	IF	CITATIONS
19	Thirty year monitoring of PCBs, organochlorine pesticides and tetrabromodiphenylether in eel from The Netherlands. Environmental Pollution, 2010, 158, 1228-1236.	3.7	65
20	Perfluoroalkyl substances in polar bear mother–cub pairs: A comparative study based on plasma levels from 1998 and 2008. Environment International, 2012, 49, 92-99.	4.8	60
21	Perfluoroalkylated substances (PFASs) in home and commercially produced chicken eggs from the Netherlands and Greece. Chemosphere, 2016, 144, 2106-2112.	4.2	57
22	Mitigation Strategies for the Reduction of 2―and 3â€MCPD Esters and Glycidyl Esters in the Vegetable Oil Processing Industry. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 349-361.	5.9	56
23	Analysis of perfluorinated phosponic acids and perfluorooctane sulfonic acid in water, sludge and sediment by LC–MS/MS. Talanta, 2011, 86, 329-336.	2.9	55
24	Meeting the Needs for Released Nanomaterials Required for Further Testing—The SUN Approach. Environmental Science & Technology, 2016, 50, 2747-2753.	4.6	55
25	Use of a presolvent to include volatile organic analytes in the application range of on-line solid-phase extraction–gas chromatography–mass spectrometry. Journal of Chromatography A, 1998, 811, 117-133.	1.8	54
26	Occurrence of perfluoroalkyl substances (PFASs) in a large number of wild and farmed aquatic animals collected in the Netherlands. Chemosphere, 2019, 232, 415-423.	4.2	50
27	The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let's cooperate!. Environmental Sciences Europe, 2020, 32, .	2.6	46
28	Review of analytical approaches for the identification of non-intentionally added substances in paper and board food contact materials. Trends in Food Science and Technology, 2019, 85, 44-54.	7.8	43
29	Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and biphenyls (PCBs) in home-produced eggs. Chemosphere, 2016, 150, 311-319.	4.2	42
30	Analysis of perfluorinated compounds in biota by microextraction with tetrahydrofuran and liquid chromatography/ion isolation-based ion-trap mass spectrometry. Journal of Chromatography A, 2010, 1217, 3774-3782.	1.8	41
31	Polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls in fish from the Netherlands: concentrations, profiles and comparison with DR CALUX® bioassay results. Analytical and Bioanalytical Chemistry, 2007, 389, 321-333.	1.9	38
32	The performance of atmospheric pressure gas chromatography–tandem mass spectrometry compared to gas chromatography–high resolution mass spectrometry for the analysis of polychlorinated dioxins and polychlorinated biphenyls in food and feed samples. Journal of Chromatography A, 2016, 1477, 76-90.	1.8	36
33	Dioxins, PCBs and heavy metals in Chinese mitten crabs from Dutch rivers and lakes. Chemosphere, 2015, 123, 1-8.	4.2	34
34	Congener patterns of polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls as a useful aid to source identification during a contamination incident in the food chain. Science of the Total Environment, 2020, 746, 141098.	3.9	34
35	The international validation of bio- and chemical-analytical screening methods for dioxins and dioxin-like PCBs: the DIFFERENCE project rounds 1 and 2. Talanta, 2004, 63, 1169-1182.	2.9	33
36	Gastrointestinal digestion of dietary advanced glycation endproducts using an <i>in vitro</i> model of the gastrointestinal tract (TIM-1). Food and Function, 2020, 11, 6297-6307.	2.1	33

STEFAN PJ VAN LEEUWEN

#	Article	IF	CITATIONS
37	BPA, BADGE and analogues: A new multi-analyte LC-ESI-MS/MS method for their determination and their inÂvitro (anti)estrogenic and (anti)androgenic properties. Chemosphere, 2019, 221, 246-253.	4.2	32
38	New certified and candidate certified reference materials for the analysis of PCBs, PCDD/Fs, OCPs and BFRs in the environment and food. TrAC - Trends in Analytical Chemistry, 2006, 25, 397-409.	5.8	30
39	Quantitative electrospray LC–MS and LC–MS/MS in biomedicine. Journal of Pharmaceutical and Biomedical Analysis, 1998, 17, 1129-1138.	1.4	29
40	Analytical improvements shown over four interlaboratory studies of perfluoroalkyl substances in environmental and food samples. TrAC - Trends in Analytical Chemistry, 2013, 43, 204-216.	5.8	29
41	Quantitative in vitro-to-in vivo extrapolation (QIVIVE) of estrogenic and anti-androgenic potencies of BPA and BADGE analogues. Archives of Toxicology, 2019, 93, 1941-1953.	1.9	28
42	Discrimination of processing grades of olive oil and other vegetable oils by monochloropropanediol esters and glycidyl esters. Food Chemistry, 2018, 248, 93-100.	4.2	27
43	Non-targeted identification of per- and polyfluoroalkyl substances at trace level in surface water using fragment ion flagging. Chemosphere, 2021, 265, 128599.	4.2	26
44	A simple and rapid extraction method for sensitive determination of perfluoroalkyl substances in blood serum suitable for exposure evaluation. Journal of Chromatography A, 2012, 1235, 84-91.	1.8	23
45	Perfluoroalkylated substances in edible livers of farm animals, including depuration behaviour in young sheep fed with contaminated grass. Chemosphere, 2016, 156, 280-285.	4.2	23
46	Occurrence and tissue distribution of perfluoroalkyl substances (PFASs) in sharks and rays from the eastern Mediterranean Sea. Environmental Pollution, 2019, 252, 379-387.	3.7	23
47	Importance of REP values when comparing the CALUX bioassay results with chemoanalyses resultsExample with spiked vegetable oils. Talanta, 2004, 63, 1255-1259.	2.9	22
48	Legacy and Emerging Persistent Organic Pollutants in Antarctic Benthic Invertebrates near Rothera Point, Western Antarctic Peninsula. Environmental Science & Technology, 2020, 54, 2763-2771.	4.6	21
49	Results for PCDD/PCDF and dl-PCBs in the First Round of UNEPs Biennial Global Interlaboratory Assessment on Persistent Organic Pollutants. TrAC - Trends in Analytical Chemistry, 2013, 46, 98-109.	5.8	18
50	First worldwide UNEP interlaboratory study on persistent organic pollutants (POPs), with data on polychlorinated biphenyls and organochlorine pesticides. TrAC - Trends in Analytical Chemistry, 2013, 46, 110-117.	5.8	17
51	United Nations Environment Programme Capacity Building Pilot Project—Training and interlaboratory study on persistent organic pollutant analysis under the Stockholm Convention. Analytica Chimica Acta, 2008, 617, 208-215.	2.6	16
52	Accumulation of persistent organic pollutants in consumers of eel from polluted rivers compared to marketable eel. Environmental Pollution, 2016, 219, 80-88.	3.7	15
53	Brominated flame retardants in animal derived foods in the Netherlands between 2009 and 2014. Chemosphere, 2019, 234, 171-178.	4.2	15
54	Development, validation, and application of a new method for the quantitative determination of monohydrogen-substituted perfluoroalkyl carboxylic acids (H–PFCAs) in surface water. Chemosphere, 2022, 287, 132143.	4.2	14

STEFAN PJ VAN LEEUWEN

#	Article	IF	CITATIONS
55	Chemical refining methods effectively mitigate 2-MCPD esters, 3-MCPD esters, and glycidyl esters formation in refined vegetable oils. Food Research International, 2022, 156, 111137.	2.9	14
56	Determination of perfluoroalkylated substances (PFASs) in drinking water from the Netherlands and Greece. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 1-10.	1.1	13
57	POPs analysis reveals issues in bringing laboratories in developing countries to a higher quality level. TrAC - Trends in Analytical Chemistry, 2013, 46, 198-206.	5.8	11
58	High levels of dioxins and PCBs in meat, fat and livers of free ranging pigs, goats, sheep and cows from the island of Curaçao. Chemosphere, 2021, 263, 128057.	4.2	11
59	Effective physical refining for the mitigation of processing contaminants in palm oil at pilot scale. Food Research International, 2020, 138, 109748.	2.9	10
60	Dietary advanced glycation endâ€products, 2â€monochloropropaneâ€1,3â€diol esters and 3â€monochloropropaneâ€1,2â€diol esters and glycidyl esters in infant formulas: Occurrence, formulation and processing effects, mitigation strategies. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5489-5515.	5.9	8
61	Gastrointestinal digestion of dietary advanced glycation endproducts increases their pro-inflammatory potential. Food and Function, 2021, 12, 6691-6696.	2.1	7
62	Impurities in technical mixtures of chlorinated paraffins show AhR agonist properties as determined by the DR-CALUX bioassay. Toxicology in Vitro, 2021, 72, 105098.	1.1	5
63	Persistent Organic Pollutants in two species of migratory birds from Rothera Point, Adelaide Island, Antarctica. Marine Pollution Bulletin, 2018, 137, 113-118.	2.3	4
64	Response to "Comment on Halogenated Contaminants in Farmed Salmon, Trout, Tilapia, Pangasius, and Shrimp― Environmental Science & Technology, 2009, 43, 7586-7587.	4.6	1
65	Benzopyrene Serum Concentration After Endovenous Laser Ablation of the Great Saphenous Vein. Vascular and Endovascular Surgery, 2013, 47, 213-215.	0.3	1
66	PCDD/Fs and PCBs in Soils: a Study of Case in the City of Belo Horizonte‑MG. Journal of the Brazilian Chemical Society, 0, , .	0.6	1