Luis Henrique Mendes da Silva

List of Publications by Citations

Source:

https://exaly.com/author-pdf/9501748/luis-henrique-mendes-da-silva-publications-by-citations.pdf **Version:** 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

122
papers3,315
citations36
h-index50
g-index122
ext. papers3,560
ext. citations5
avg, IF5.07
L-index

#	Paper	IF	Citations
122	Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 4341-9	3.4	277
121	Calorimetric Investigation of the Formation of Aqueous Two-Phase Systems in Ternary Mixtures of Water, Poly(ethylene oxide) and Electrolytes (Or Dextran). <i>Journal of Physical Chemistry B</i> , 2000 , 104, 10069-10073	3.4	115
120	Separation of Cd and Ni from Nited batteries by an environmentally safe methodology employing aqueous two-phase systems. <i>Journal of Power Sources</i> , 2009 , 193, 908-913	8.9	91
119	Liquid II quid extraction of metal ions without use of organic solvent. <i>Separation and Purification Technology</i> , 2008 , 62, 687-693	8.3	90
118	Liquid Diquid Equilibria of an Aqueous Two-Phase System Containing Poly(ethylene) Glycol 1500 and Sulfate Salts at Different Temperatures. <i>Journal of Chemical & Different Data</i> , 2008 , 53, 238-	2 41	79
117	Aqueous two-phase systems: an efficient, environmentally safe and economically viable method for purification of natural dye carmine. <i>Journal of Chromatography A</i> , 2009 , 1216, 7623-9	4.5	77
116	Adsorption of red azo dyes on multi-walled carbon nanotubes and activated carbon: A thermodynamic study. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 529, 531-5	5 4 6	64
115	Investigations on the mechanism of aqueous solubility increase caused by some hydrotropes. <i>Thermochimica Acta</i> , 1999 , 328, 161-167	2.9	64
114	Equilibrium Data for PEG 4000 + Salt + Water Systems from (278.15 to 318.15) K. <i>Journal of Chemical & Chemica</i>	2.8	59
113	Hydrophobic effect on the partitioning of [Fe(CN)5(NO)]2[and [Fe(CN)6]3[anions in aqueous two-phase systems formed by triblock copolymers and phosphate salts. <i>Separation and Purification Technology</i> , 2008 , 60, 103-112	8.3	59
112	Modeling adsorption of copper(II), cobalt(II) and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part II: Optimization of monocomponent fixed-bed column adsorption. <i>Journal of Colloid and Interface Science</i> , 2018 , 516, 431-445	9.3	54
111	Application of aqueous two-phase systems for the development of a new method of cobalt(II), iron(III) and nickel(II) extraction: a green chemistry approach. <i>Journal of Hazardous Materials</i> , 2011 , 193, 311-8	12.8	54
110	Trimellitated sugarcane bagasse: A versatile adsorbent for removal of cationic dyes from aqueous solution. Part I: Batch adsorption in a monocomponent system. <i>Journal of Colloid and Interface Science</i> , 2018 , 515, 172-188	9.3	52
109	A colorimetric biosensor for the detection of foodborne bacteria. <i>Sensors and Actuators B: Chemical</i> , 2011 , 153, 17-23	8.5	51
108	Application of hydrophobic extractant in aqueous two-phase systems for selective extraction of cobalt, nickel and cadmium. <i>Journal of Chromatography A</i> , 2013 , 1279, 13-9	4.5	50
107	Nitroprusside-PEO enthalpic interaction as a driving force for partitioning of the [Fe(CN)(5)NO](2-) anion in aqueous two-phase systems formed by poly(ethylene oxide) and sulfate salts. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 23540-6	3.4	50
106	Liquid Liquid Equilibria of Biphasic Systems Composed of Sodium Citrate + Polyethylene (glycol) 1500 or 4000 at Different Temperatures. <i>Journal of Chemical & Chemic</i>	2.8	49

(2009-2013)

105	Removal of Acid Green 68:1 from aqueous solutions by calcined and uncalcined layered double hydroxides. <i>Applied Clay Science</i> , 2013 , 80-81, 189-195	5.2	46	
104	Copper recovery from ore by liquid-liquid extraction using aqueous two-phase system. <i>Journal of Hazardous Materials</i> , 2012 , 237-238, 209-14	12.8	46	
103	A green and sensitive method to determine phenols in water and wastewater samples using an aqueous two-phase system. <i>Talanta</i> , 2010 , 80, 1139-44	6.2	46	
102	Phase Compositions of Aqueous Two-Phase Systems Formed by L35 and Salts at Different Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 1193-1199	2.8	45	
101	Liquid Liquid Phase Equilibrium of Triblock Copolymer L64, Poly(ethylene oxide-b-propylene oxide-b-ethylene oxide), with Sulfate Salts from (278.15 to 298.15) K. <i>Journal of Chemical & Engineering Data</i> , 2009 , 54, 1894-1898	2.8	45	
100	Liquid[liquid Equilibrium of Aqueous Mixture of Triblock Copolymers L35 and F68 with Na2SO4, Li2SO4, or MgSO4. <i>Journal of Chemical & Engineering Data</i> , 2006 , 51, 2260-2264	2.8	45	
99	Cryogel Poly(acrylamide): Synthesis, Structure and Applications. <i>Separation and Purification Reviews</i> , 2014 , 43, 241-262	7.3	44	
98	Hydrophobic interaction adsorption of whey proteins: effect of temperature and salt concentration and thermodynamic analysis. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2006 , 844, 6-14	3.2	44	
97	PEO-[M(CN)5NO](x-) (M = Fe, Mn, or Cr) interaction as a driving force in the partitioning of the pentacyanonitrosylmetallate anion in ATPS: strong effect of the central atom. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 11669-78	3.4	42	
96	Partitioning of caseinomacropeptide in aqueous two-phase systems. <i>Journal of Chromatography B:</i> Analytical Technologies in the Biomedical and Life Sciences, 2007 , 858, 205-10	3.2	42	
95	Liquid II quid equilibrium of aqueous two-phase systems composed of poly(ethylene oxide) 1500 and different electrolytes ((NH4)2SO4, ZnSO4 and K2HPO4): Experimental and correlation. <i>Fluid Phase Equilibria</i> , 2011 , 305, 19-24	2.5	40	
94	Liquid[liquid Equilibrium of Aqueous Two-Phase System Composed of Poly(ethylene glycol) 400 and Sulfate Salts. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 1247-1251	2.8	40	
93	Phase diagram and thermodynamic modeling of PEO+organic salts+H2O and PPO+organic salts+H2O aqueous two-phase systems. <i>Fluid Phase Equilibria</i> , 2011 , 305, 1-8	2.5	39	
92	Aqueous two-phase systems of copolymer L64+organic salt+water: Enthalpic L64Balt interaction and OthmerTobias, NRTL and UNIFAC thermodynamic modeling. <i>Chemical Engineering Journal</i> , 2011 , 171, 9-15	14.7	38	
91	Thermodynamic study of colorimetric transitions in polydiacetylene vesicles induced by the solvent effect. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 13365-71	3.4	38	
90	Phase Diagrams of Aqueous Two-Phase Systems with Organic Salts and F68 Triblock Copolymer at Different Temperatures. <i>Journal of Chemical & Different Temperatures</i> . <i>Journal of Chemical & Different Temperatures</i> .	2.8	38	
89	Green separation of copper and zinc using triblock copolymer aqueous two-phase systems. Separation and Purification Technology, 2013 , 115, 107-113	8.3	37	
88	Liquid[liquid Equilibria of an Aqueous Two-Phase System Formed by a Triblock Copolymer and Sodium Salts at Different Temperatures. <i>Journal of Chemical & Different Temperatures</i> (1989), 54, 2891-28	3 ² 4 ⁸	37	

87	Control of Microbial Adhesion as a Strategy for Food and Bioprocess Technology. <i>Food and Bioprocess Technology</i> , 2010 , 3, 321-332	5.1	37
86	Equilibrium Phase Behavior of Triblock Copolymer + Salt + Water Two-Phase Systems at Different Temperatures and pH. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 1457-1461	2.8	36
85	Thermodynamic and kinetic analyses of curcumin and bovine serum albumin binding. <i>Food Chemistry</i> , 2018 , 242, 505-512	8.5	31
84	Antimicrobial effects of silver nanoparticles against bacterial cells adhered to stainless steel surfaces. <i>Journal of Food Protection</i> , 2012 , 75, 701-5	2.5	31
83	Synthesis and application of a new carboxylated cellulose derivative. Part I: Removal of Co(2+), Cu(2+) and Ni(2+) from monocomponent spiked aqueous solution. <i>Journal of Colloid and Interface Science</i> , 2016 , 483, 185-200	9.3	31
82	Thermodynamics and optimization of norbixin transfer processes in aqueous biphasic systems formed by polymers and organic salts. <i>Separation and Purification Technology</i> , 2012 , 98, 69-77	8.3	30
81	Adsorption of Chemically Modified Xylans on Eucalyptus Pulp and Its Effect on the Pulp Physical Properties. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 1138-1145	3.9	30
80	Green recovery of mercury from domestic and industrial waste. <i>Journal of Hazardous Materials</i> , 2016 , 304, 417-24	12.8	28
79	Polydiacetylene as a Biosensor: Fundamentals and Applications in the Food Industry. <i>Food and Bioprocess Technology</i> , 2010 , 3, 172-181	5.1	28
78	Liquid Liquid Equilibrium of Aqueous Two-Phase Systems Containing Poly(ethylene) Glycol 4000 and Zinc Sulfate at Different Temperatures. <i>Journal of Chemical & Chemi</i>	-9 2 :8	28
77	Ovomucoid partitioning in aqueous two-phase systems. <i>Biochemical Engineering Journal</i> , 2009 , 47, 55-6	504.2	27
76	Application of the response surface methodology for optimization of whey protein partitioning in PEG/phosphate aqueous two-phase system. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2011 , 879, 1881-5	3.2	26
75	The effect of poly(ethylene glycol) on the activity and structure of glucose-6-phosphate dehydrogenase in solution. <i>Colloids and Surfaces B: Biointerfaces</i> , 2002 , 26, 291-300	6	25
74	A novel micellar medium using triblock copolymer for cobalt determination. <i>Analytical Sciences</i> , 2005 , 21, 933-7	1.7	25
73	Binding thermodynamics of synthetic dye Allura Red with bovine serum albumin. <i>Food Chemistry</i> , 2017 , 217, 52-58	8.5	24
72	Density, Electrical Conductivity, Kinematic Viscosity, and Refractive Index of Binary Mixtures Containing Poly(ethylene glycol) 4000, Lithium Sulfate, and Water at Different Temperatures. <i>Journal of Chemical & Different Temperatures</i> .	2.8	24
71	Synthesis and application of a new carboxylated cellulose derivative. Part III: Removal of auramine-O and safranin-T from mono- and bi-component spiked aqueous solutions. <i>Journal of Colloid and Interface Science</i> , 2018 , 512, 575-590	9.3	24
70	Microcalorimetric and SAXS determination of PEO-SDS interactions: the effect of cosolutes formed by ions. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 11967-74	3.4	23

(2008-2008)

69	Equilibrium Phase Behavior for Ternary Mixtures of Poly(ethylene) Glycol 6000 + Water + Sulfate Salts at Different Temperatures. <i>Journal of Chemical & Data</i> , 2008, 53, 2441-2443	2.8	23	
68	Thermodynamic studies of partitioning behavior of lysozyme and conalbumin in aqueous two-phase systems. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2009 , 877, 2579-84	3.2	22	
67	Sistema aquoso bif\(\text{Bico}: \) uma alternativa eficiente para extra\(\text{B} \) de \(\text{B} \) ns. \(Quimica Nova, \(\text{2006}, 29, 1332-1339 \)	1.6	21	
66	Phase diagrams, densities and refractive indexes of poly(ethylene oxide) + organic salts + water aqueous two-phase systems: Effect of temperature, anion and molar mass. <i>Fluid Phase Equilibria</i> , 2015 , 406, 70-76	2.5	20	
65	Sistemas aquosos bif\(\text{Bicos}\): fundamentos e aplica\(\text{B}\)s para parti\(\text{B}\)/purifica\(\text{D}\) de prote\(\text{B}\)as. Quimica Nova, 2006, 29, 1345-1351	1.6	20	
64	Thermodynamic and kinetic study of epigallocatechin-3-gallate-bovine lactoferrin complex formation determined by surface plasmon resonance (SPR): A comparative study with fluorescence spectroscopy. <i>Food Hydrocolloids</i> , 2019 , 95, 526-532	10.6	19	
63	Aspectos coloidais da ades B de micro-organismos. <i>Quimica Nova</i> , 2010 , 33, 1940-1948	1.6	19	
62	Aqueous two-phase systems: a new approach for the determination of p-aminophenol. <i>Journal of Hazardous Materials</i> , 2011 , 192, 292-8	12.8	19	
61	Partitioning of <code>Hactalbumin</code> and <code>Hactoglobulin</code> from cheese whey in aqueous two-phase systems containing poly (ethylene glycol) and sodium polyacrylate. <i>Food and Bioproducts Processing</i> , 2014 , 92, 409-415	4.9	18	
60	Surface Excess Enthalpy of PEO + Salt +Water and L35 + Salt + Water Aqueous Two-Phase Systems <i>Journal of Chemical & Data</i> , 2009, 54, 531-535	2.8	18	
59	Interfacial Tension and Viscosity for Poly(ethylene glycol) + Maltodextrin Aqueous Two-Phase Systems. <i>Journal of Chemical & Engineering Data</i> , 2006 , 51, 1144-1147	2.8	18	
58	Microcalorimetric study of the adsorption of lactoferrin in supermacroporous continuous cryogel with immobilized Cu(2+) ions. <i>Journal of Chromatography A</i> , 2013 , 1312, 1-9	4.5	17	
57	Equilibrium Phase Behavior of Triblock Copolymer + Sodium or + Potassium Hydroxides + Water Two-Phase Systems at Different Temperatures. <i>Journal of Chemical & Data</i> , 2010 , 55, 3847-3852	2.8	17	
56	LiquidIiquid Phase Equilibrium of Triblock Copolymer F68, Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide), with Sulfate Salts. <i>Journal of Chemical & Data</i> , 2010, 55, 1618-1622	2.8	17	
55	Polydiacetylene/triblock copolymer nanosensor for the detection of native and free bovine serum albumin. <i>Materials Science and Engineering C</i> , 2017 , 70, 535-543	8.3	16	
54	Adsorption isotherms and thermodynamics of <code>Hactalbumin</code> on an anionic exchanger. <i>Fluid Phase Equilibria</i> , 2013 , 348, 39-44	2.5	16	
53	Equilibrium Data of the Biphasic System Poly(ethylene oxide) 4000 + Copper Sulfate + Water at (5, 10, 35, and 45) °C. <i>Journal of Chemical & Data, 2008</i> , 53, 1571-1573	2.8	16	
52	Influence of the temperature and type of salt on the phase equilibrium of peg 1500 + potassium phosphate and peg 1500 + sodium citrate aqueous two-phase systems. <i>Quimica Nova</i> , 2008 , 31, 209-213	1.6	16	

51	Physicochemical Aspects of Chitosan Dispersibility in Acidic Aqueous Media: Effects of the Food Acid Counter-Anion. <i>Food Biophysics</i> , 2016 , 11, 388-399	3.2	16
50	Determination of driving forces for bovine serum albumin-Ponceau4R binding using surface plasmon resonance and fluorescence spectroscopy: A comparative study. <i>Food Hydrocolloids</i> , 2017 , 70, 29-35	10.6	15
49	Measurement and Correlation of the Phase Equilibrium of Aqueous Two-Phase Systems Composed of Polyethylene(glycol) 1500 or 4000 + Sodium Sulfite + Water at Different Temperatures. <i>Journal of Chemical & Different Temperatures</i> 2014, 59, 382-390	2.8	15
48	Aminated cellulose as a versatile adsorbent for batch removal of As(V) and Cu(II) from mono- and multicomponent aqueous solutions. <i>Journal of Colloid and Interface Science</i> , 2020 , 576, 158-175	9.3	15
47	Interaction of cinnamic acid and methyl cinnamate with bovine serum albumin: A thermodynamic approach. <i>Food Chemistry</i> , 2017 , 237, 525-531	8.5	14
46	Phase Diagram, Densities, and the Refractive Index of New Aqueous Two-Phase System Formed by PEO1500 + Thiosulfate + H2O at Different Temperatures. <i>Journal of Chemical & Data</i> , 2012, 57, 274-279	2.8	14
45	Microcalorimetric study of adsorption of glycomacropeptide on anion-exchange chromatography adsorbent. <i>Journal of Chromatography A</i> , 2009 , 1216, 4440-4	4.5	13
44	Liquid biphase systems formed in ternary mixtures of two organic solvents and ethylene oxide oligomers or polymers. <i>Journal of the Brazilian Chemical Society</i> , 2000 , 11, 375-380	1.5	13
43	Human serum albumin-resveratrol complex formation: Effect of the phenolic chemical structure on the kinetic and thermodynamic parameters of the interactions. <i>Food Chemistry</i> , 2020 , 307, 125514	8.5	13
42	Kinetics and thermodynamics of bovine serum albumin interactions with Congo red dye. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 159, 737-742	6	12
41	Modification of stainless steel surface hydrophobicity by silver nanoparticles: strategies to prevent bacterial adhesion in the food processing. <i>Journal of Adhesion Science and Technology</i> , 2013 , 27, 2686-2	6 9 5	11
40	Partitioning of glutenin flour of special wheat using aqueous two-phase systems. <i>Journal of Cereal Science</i> , 2010 , 52, 270-274	3.8	11
39	Equilibrium Data for Poly(propylene glycol) + Sucrose + Water and Poly(propylene Glycol) + Fructose + Water Systems from (15 to 45) °C. <i>Journal of Chemical & Chemic</i>	19 2 -165	2 ¹¹
38	Driving forces for chymosin partitioning on the macromolecule-salt aqueous two phase system. <i>Food and Bioproducts Processing</i> , 2016 , 100, 361-371	4.9	11
37	Synthesis and application of sugarcane bagasse cellulose mixed esters. Part I: Removal of Co and Ni from single spiked aqueous solutions in batch mode using sugarcane bagasse cellulose succinate phthalate. <i>Journal of Colloid and Interface Science</i> , 2019 , 533, 678-691	9.3	11
36	A simple and inexpensive thermal optic nanosensor formed by triblock copolymer and polydiacetylene mixture. <i>Food Chemistry</i> , 2018 , 241, 358-363	8.5	10
35	Polydiacetylene/triblock copolymer nanoblend applied as a sensor for micellar casein: A thermodynamic approach. <i>Food Chemistry</i> , 2016 , 197, 841-7	8.5	10
34	Distribution and Quality of the Organic Matter in Light and Heavy Fractions of a Red Latosol under Different Uses and Management Practices. <i>Communications in Soil Science and Plant Analysis</i> , 2012 , 43, 835-846	1.5	10

(2018-2019)

33	Polydiacetylene/triblock copolymer/surfactant nanoblend: A simple and rapid method for the colorimetric screening of enrofloxacin residue. <i>Food Chemistry</i> , 2019 , 280, 1-7	8.5	10
32	Liquid-liquid equilibrium of the ternary ammonium salt + poly(propylene glycol) + water system. <i>Fluid Phase Equilibria</i> , 2017 , 442, 96-103	2.5	9
31	Insights into protein-curcumin interactions: Kinetics and thermodynamics of curcumin and lactoferrin binding. <i>Food Hydrocolloids</i> , 2020 , 105, 105825	10.6	9
30	Alternativas verdes para o preparo de amostra e determinaß de poluentes fenticos em ĝua. <i>Quimica Nova</i> , 2010 , 33, 1370-1378	1.6	9
29	Monosegmented flow analysis exploiting aqueous two-phase systems for the determination of cobalt. <i>Analytical Sciences</i> , 2012 , 28, 1213-8	1.7	9
28	Partition of alpha-lactoalbumin and beta-lactoglobulin by cloud point extraction. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2008 , 867, 189-93	3.2	9
27	Curcumin-micellar casein multisite interactions elucidated by surface plasmon resonance. <i>International Journal of Biological Macromolecules</i> , 2019 , 133, 860-866	7.9	8
26	Effect of 1-Butyl-3-methylimidazolium Halide on the Relative Stability between Sodium Dodecyl Sulfate Micelles and Sodium Dodecyl Sulfate-Poly(ethylene oxide) Nanoaggregates. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 15758-68	3.4	8
25	Synthesis and application of sugarcane bagasse cellulose mixed esters. Part II: Removal of Co and Ni from single spiked aqueous solutions in batch and continuous mode. <i>Journal of Colloid and Interface Science</i> , 2019 , 552, 337-350	9.3	7
24	Energetic parameters of tasein/quercetin activated and thermodynamically stable complex formation accessed by Surface Plasmon Resonance. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 181, 798-805	6	6
23	#Casein monomers as potential flavonoids nanocarriers: Thermodynamics and kinetics of the transfer of the transfer of t	3.5	6
22	Temperature modulation of lutein-lysozyme hydrophobic-hydrophilic interaction balance. <i>Journal of Molecular Liquids</i> , 2020 , 316, 113887	6	6
21	Depletion interactions and modulation of DNA-intercalators binding: Opposite behavior of the "neutral" polymer poly(ethylene-glycol). <i>Biopolymers</i> , 2016 , 105, 227-33	2.2	6
20	Lactoferrin denaturation induced by anionic surfactants: The role of the ferric ion in the protein stabilization. <i>International Journal of Biological Macromolecules</i> , 2018 , 117, 1039-1049	7.9	6
19	Doxorubicin hinders DNA condensation promoted by the protein bovine serum albumin (BSA). <i>Biopolymers</i> , 2017 , 107, e23071	2.2	5
18	Phase equilibrium of aqueous two-phase systems composed by L35 triblock copolymer + organic and inorganic ammonium electrolytes + water at 298.2 and 313.2 K. <i>Fluid Phase Equilibria</i> , 2018 , 469, 26-32	2.5	5
17	Carotene and Milk Protein Complexation: a Thermodynamic Approach and a Photo Stabilization Study. <i>Food and Bioprocess Technology</i> , 2018 , 11, 610-620	5.1	5
16	Green speciation of iron using aqueous two-phase system. <i>Anais Da Academia Brasileira De Ciencias</i> , 2018 , 90, 1929-1944	1.4	5

15	Acquisition of Water Solubility Diagrams in Ternary Systems (AOT/Organic Solvent/Alcohol) and Extraction of <code>Lactalbumin</code> Using Reverse Micellar Systems. <i>Journal of Surfactants and Detergents</i> , 2017 , 20, 831-841	1.9	4	
14	Phase Diagrams, Densities, and Refractive Indexes of Aqueous Two-Phase Systems Comprising (F68, L64, or PEO1500) + (Ammonium, Sodium, or Potassium Thiocyanate Salts) + Water: Effect of Cation and Type of Macromolecule. <i>Journal of Chemical & </i>	2.8	4	
13	Macromolecular properties from light-scattering experimental data using linear inverse problem theory. <i>International Journal of Quantum Chemistry</i> , 2006 , 106, 2731-2736	2.1	4	
12	Aggregation behavior of self-assembled nanoparticles made from carboxymethyl-hexanoyl chitosan and sodium dodecyl sulphate surfactant in water. <i>Journal of Molecular Liquids</i> , 2019 , 278, 253-7	261	4	
11	Application of pyridine-modified chitosan derivative for simultaneous adsorption of Cu(II) and oxyanions of Cr(VI) from aqueous solution. <i>Journal of Environmental Management</i> , 2021 , 282, 111939	7.9	4	
10	Calorimetric studies of microemulsion systems with lecithin, isooctane and butanol. <i>Food Research International</i> , 2012 , 49, 672-676	7	3	
9	Aggregation of sodium dodecylbenzene sulfonate: Weak molecular interactions modulated by imidazolium cation of short alkyl chain length. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 589, 124435	5.1	3	
8	Solvophobic effect of 1-alkyl-3-methylimidazolium chloride on the thermodynamic of complexation between Eyclodextrin and dodecylpyridinium cation. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 582, 123850	5.1	2	
7	Thermodynamic Characterization of Humic Acid-surfactant Interaction: New Insights into the Characteristics and Structure of Humic Acids. <i>Revista Brasileira De Ciencia Do Solo</i> , 2015 , 39, 1633-1642	1.5	2	
6	⊞actoglobulin conformation influences its interaction with caffeine. <i>Food Bioscience</i> , 2021 , 44, 101418	4.9	2	
5	Batch and continuous adsorption of Cu(II) and Zn(II) ions from aqueous solution on bi-functionalized sugarcane-based biosorbent. <i>Environmental Science and Pollution Research</i> , 2021 , 1	5.1	1	
4	Thermodynamic and kinetic insights into the interactions between functionalized CdTe quantum dots and human serum albumin: A surface plasmon resonance approach. <i>International Journal of Biological Macromolecules</i> , 2021 , 184, 990-999	7.9	1	
3	Energetic and molecular dynamic characterization of lysozyme/tearotene interaction. <i>Journal of Molecular Liquids</i> , 2021 , 337, 116404	6	1	
2	Functionalized Polydiacetylene Vesicles for Lactate Sensing: An Interaction Study. <i>ACS Food Science</i> & <i>Technology</i> , 2021 , 1, 745-753		O	
1	Application of Congo red dye as a molecular probe to investigate the kinetics and thermodynamics of the formation processes of arachin and congrachin panocomplexes. <i>Food Chemistry</i> 2022 , 384, 1324	8 5	О	