
## Jürgen Schnelle-Kreis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9501425/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514, 218-222.                                                                                                                                                                                                                               | 13.7 | 3,582     |
| 2  | The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges. Chemical Reviews, 2015, 115, 3919-3983.                                                                                                                                                                                                       | 23.0 | 417       |
| 3  | Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmospheric Chemistry and Physics, 2015, 15, 1299-1312.                                                                                                                                                          | 1.9  | 163       |
| 4  | Search criteria and rules for comprehensive two-dimensional gas chromatography–time-of-flight<br>mass spectrometry analysis of airborne particulate matter. Journal of Chromatography A, 2003, 1019,<br>233-249.                                                                                                                                    | 1.8  | 143       |
| 5  | Particle Emissions from a Marine Engine: Chemical Composition and Aromatic Emission Profiles under Various Operating Conditions. Environmental Science & amp; Technology, 2014, 48, 11721-11729.                                                                                                                                                    | 4.6  | 131       |
| 6  | Indoor and outdoor BTX levels in German cities. Science of the Total Environment, 2001, 267, 41-51.                                                                                                                                                                                                                                                 | 3.9  | 129       |
| 7  | Occurrence of particle-associated polycyclic aromatic compounds in ambient air of the city of Munich. Atmospheric Environment, 2001, 35, 71-81.                                                                                                                                                                                                     | 1.9  | 121       |
| 8  | Source apportionment of ambient particles: Comparison of positive matrix factorization analysis<br>applied to particle size distribution and chemical composition data. Atmospheric Environment, 2011, 45,<br>1849-1857.                                                                                                                            | 1.9  | 114       |
| 9  | Particulate Matter from Both Heavy Fuel Oil and Diesel Fuel Shipping Emissions Show Strong<br>Biological Effects on Human Lung Cells at Realistic and Comparable In Vitro Exposure Conditions.<br>PLoS ONE, 2015, 10, e0126536.                                                                                                                     | 1.1  | 111       |
| 10 | Contributions of City-Specific Fine Particulate Matter (PM <sub>2.5</sub> ) to Differential <i>In<br/>Vitro</i> Oxidative Stress and Toxicity Implications between Beijing and Guangzhou of China.<br>Environmental Science & Technology, 2019, 53, 2881-2891.                                                                                      | 4.6  | 109       |
| 11 | Comparison of Emissions from Wood Combustion. Part 1: Emission Factors and Characteristics from<br>Different Small-Scale Residential Heating Appliances Considering Particulate Matter and Polycyclic<br>Aromatic Hydrocarbon (PAH)-Related Toxicological Potential of Particle-Bound Organic Species.<br>Energy & Amp: Fuels, 2012, 26, 6695-6704. | 2.5  | 104       |
| 12 | Semi Volatile Organic Compounds in Ambient PM2.5. Seasonal Trends and Daily Resolved Source Contributions. Environmental Science & amp; Technology, 2007, 41, 3821-3828.                                                                                                                                                                            | 4.6  | 98        |
| 13 | Technical Note: In-situ derivatization thermal desorption GC-TOFMS for direct analysis of particle-bound non-polar and polar organic species. Atmospheric Chemistry and Physics, 2011, 11, 8977-8993.                                                                                                                                               | 1.9  | 87        |
| 14 | Source Apportionment of Elemental Carbon in Beijing, China: Insights from Radiocarbon and Organic<br>Marker Measurements. Environmental Science & Technology, 2015, 49, 8408-8415.                                                                                                                                                                  | 4.6  | 83        |
| 15 | Concentrations and source contributions of particulate organic matter before and after<br>implementation of a low emission zone in Munich, Germany. Environmental Pollution, 2013, 175, 158-167.                                                                                                                                                    | 3.7  | 82        |
| 16 | Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex. Journal of<br>Geophysical Research D: Atmospheres, 2014, 119, 6818-6835.                                                                                                                                                                                     | 1.2  | 82        |
| 17 | The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models. Clinical Science, 2014, 126, 207-221.                                                                                                                                                                                                 | 1.8  | 76        |
| 18 | Characteristics and temporal evolution of particulate emissions from a ship diesel engine. Applied Energy, 2015, 155, 204-217.                                                                                                                                                                                                                      | 5.1  | 76        |

| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Dynamic Changes of the Aerosol Composition and Concentration during Different Burning Phases of<br>Wood Combustion. Energy & Fuels, 2013, 27, 4959-4968.                                                                                                                              | 2.5 | 70        |
| 20 | Oxidant denuder sampling for analysis of polycyclic aromatic hydrocarbons and their oxygenated derivates in ambient aerosol: Evaluation of sampling artefact. Chemosphere, 2006, 62, 1889-1898.                                                                                       | 4.2 | 67        |
| 21 | Application of direct thermal desorption gas chromatography and comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry for analysis of organic compounds in ambient aerosol particles. Journal of Separation Science, 2005, 28, 1648-1657.      | 1.3 | 65        |
| 22 | Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil. Environmental<br>Science and Pollution Research, 2017, 24, 10976-10991.                                                                                                                        | 2.7 | 65        |
| 23 | Comparison of Emissions from Wood Combustion. Part 2: Impact of Combustion Conditions on<br>Emission Factors and Characteristics of Particle-Bound Organic Species and Polycyclic Aromatic<br>Hydrocarbon (PAH)-Related Toxicological Potential. Energy & Fuels, 2013, 27, 1482-1491. | 2.5 | 61        |
| 24 | Concentration of Oxygenated Polycyclic Aromatic Hydrocarbons and Oxygen Free Radical Formation<br>from Urban Particulate Matter. Journal of Toxicology and Environmental Health - Part A: Current<br>Issues, 2007, 70, 1866-1869.                                                     | 1.1 | 59        |
| 25 | Seasonal variation and source estimation of organic compounds in urban aerosol of Augsburg,<br>Germany. Environmental Pollution, 2011, 159, 1861-1868.                                                                                                                                | 3.7 | 57        |
| 26 | Size-Resolved Identification, Characterization, and Quantification of Primary Biological Organic<br>Aerosol at a European Rural Site. Environmental Science & Technology, 2016, 50, 3425-3434.                                                                                        | 4.6 | 57        |
| 27 | Volatile Organic Compounds from Logwood Combustion: Emissions and Transformation under Dark<br>and Photochemical Aging Conditions in a Smog Chamber. Environmental Science & Technology,<br>2018, 52, 4979-4988.                                                                      | 4.6 | 57        |
| 28 | Daytime resolved analysis of polycyclic aromatic hydrocarbons in urban aerosol samples – Impact of sources and meteorological conditions. Chemosphere, 2007, 67, 934-943.                                                                                                             | 4.2 | 55        |
| 29 | An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples. Atmospheric Measurement Techniques, 2015, 8, 125-147.                                                                                                       | 1.2 | 54        |
| 30 | Organic molecular markers and signature from wood combustion particles in winter ambient<br>aerosols: aerosol mass spectrometer (AMS) and high time-resolved GC-MS measurements in Augsburg,<br>Germany. Atmospheric Chemistry and Physics, 2012, 12, 6113-6128.                      | 1.9 | 52        |
| 31 | Seasonal variation of particle-induced oxidative potential of airborne particulate matter in Beijing.<br>Science of the Total Environment, 2017, 579, 1152-1160.                                                                                                                      | 3.9 | 47        |
| 32 | Influences of the 2010 Eyjafjallajökull volcanic plume on air quality in the northern Alpine region.<br>Atmospheric Chemistry and Physics, 2011, 11, 8555-8575.                                                                                                                       | 1.9 | 46        |
| 33 | Effect of Atmospheric Aging on Soot Particle Toxicity in Lung Cell Models at the Air–Liquid Interface:<br>Differential Toxicological Impacts of Biogenic and Anthropogenic Secondary Organic Aerosols<br>(SOAs). Environmental Health Perspectives, 2022, 130, 27003.                 | 2.8 | 44        |
| 34 | Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances. Science of the Total Environment, 2018, 612, 636-648.                                                                                               | 3.9 | 42        |
| 35 | Influence of wood species on toxicity of log-wood stove combustion aerosols: a parallel animal and<br>air-liquid interface cell exposure study on spruce and pine smoke. Particle and Fibre Toxicology, 2020,<br>17, 27.                                                              | 2.8 | 38        |
| 36 | Analysis of Gas-Phase Carbonyl Compounds in Emissions from Modern Wood Combustion Appliances:<br>Influence of Wood Type and Combustion Appliance. Energy & Fuels, 2015, 29, 3897-3907.                                                                                                | 2.5 | 37        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe. Atmospheric Chemistry and Physics, 2016, 16, 5513-5529.                                               | 1.9 | 35        |
| 38 | Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia.<br>Environment International, 2016, 91, 230-242.                                                                                           | 4.8 | 34        |
| 39 | Indoor and outdoor air concentrations of BTEX and NO2: correlation of repeated measurements.<br>Journal of Environmental Monitoring, 2004, 6, 807-812.                                                                                         | 2.1 | 33        |
| 40 | Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols.<br>Nature Geoscience, 2022, 15, 196-202.                                                                                                           | 5.4 | 31        |
| 41 | Source apportionment of fine particulate matter in a Middle Eastern Metropolis, Tehran-Iran, using PMF with organic and inorganic markers. Science of the Total Environment, 2020, 705, 135330.                                                | 3.9 | 30        |
| 42 | Are reactive oxygen species (ROS) a suitable metric to predict toxicity of carbonaceous aerosol particles?. Atmospheric Chemistry and Physics, 2022, 22, 1793-1809.                                                                            | 1.9 | 30        |
| 43 | Characteristics and sources of PM in seasonal perspective – A case study from one year continuously sampling in Beijing. Atmospheric Pollution Research, 2016, 7, 235-248.                                                                     | 1.8 | 29        |
| 44 | Spatial and temporal variability of PM10 sources in Augsburg, Germany. Atmospheric Environment, 2013, 71, 131-139.                                                                                                                             | 1.9 | 27        |
| 45 | Micro-scale (μg) radiocarbon analysis of water-soluble organic carbon in aerosol samples.<br>Atmospheric Environment, 2014, 97, 1-5.                                                                                                           | 1.9 | 27        |
| 46 | Integration of air pollution data collected by mobile measurement to derive a preliminary spatiotemporal air pollution profile from two neighboring German-Czech border villages. Science of the Total Environment, 2020, 722, 137632.         | 3.9 | 27        |
| 47 | Chemical characteristics of PM2.5 during haze episodes in spring 2013 in Beijing. Urban Climate, 2017, 22, 51-63.                                                                                                                              | 2.4 | 26        |
| 48 | PM2.5 concentration and composition in the urban air of Nanjing, China: Effects of emission control measures applied during the 2014 Youth Olympic Games. Science of the Total Environment, 2019, 652, 1-18.                                   | 3.9 | 26        |
| 49 | Particle-associated organic compounds and symptoms in myocardial infarction survivors. Inhalation Toxicology, 2011, 23, 431-447.                                                                                                               | 0.8 | 24        |
| 50 | Spatial and temporal variability of source contributions to ambient PM10 during winter in Augsburg,<br>Germany using organic and inorganic tracers. Chemosphere, 2014, 103, 263-273.                                                           | 4.2 | 24        |
| 51 | Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation. Atmospheric Environment, 2014, 94, 467-478.                                                                                      | 1.9 | 24        |
| 52 | Online determination of polycyclic aromatic hydrocarbon formation from a flame soot generator.<br>Analytical and Bioanalytical Chemistry, 2015, 407, 5911-5922.                                                                                | 1.9 | 23        |
| 53 | Regional haze formation enhanced the atmospheric pollution levels in the Yangtze River Delta region,<br>China: Implications for anthropogenic sources and secondary aerosol formation. Science of the Total<br>Environment, 2020, 728, 138013. | 3.9 | 22        |
| 54 | Air pollution in Germany: Spatio-temporal variations and their driving factors based on continuous data from 2008 to 2018. Environmental Pollution, 2021, 276, 116732.                                                                         | 3.7 | 22        |

| #  | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Particle size-dependent concentrations of polycyclic aromatic hydrocarbons. Analyst, The, 1996, 121, 1301-1304.                                                                                                                                                                        | 1.7 | 20        |
| 56 | Spatiotemporal Characteristics and Driving Factors of Black Carbon in Augsburg, Germany:<br>Combination of Mobile Monitoring and Street View Images. Environmental Science & Technology,<br>2021, 55, 160-168.                                                                         | 4.6 | 19        |
| 57 | Analysis of particle-associated semi-volatile aromatic and aliphatic hydrocarbons in urban particulate matter on a daily basis. Atmospheric Environment, 2005, , .                                                                                                                     | 1.9 | 18        |
| 58 | Daily measurement of organic compounds in ambient particulate matter in Augsburg, Germany: new aspects on aerosol sources and aerosol related health effects. Biomarkers, 2009, 14, 39-44.                                                                                             | 0.9 | 18        |
| 59 | Ambient PM10 concentrations from wood combustion – Emission modeling and dispersion calculation for the city area of Augsburg, Germany. Atmospheric Environment, 2011, 45, 3466-3474.                                                                                                  | 1.9 | 18        |
| 60 | Organic molecular markers and source contributions in a polluted municipality of north-east Italy:<br>Extended PCA-PMF statistical approach. Environmental Research, 2020, 186, 109587.                                                                                                | 3.7 | 18        |
| 61 | Exposure to naphthalene and $\hat{l}^2$ -pinene-derived secondary organic aerosol induced divergent changes in transcript levels of BEAS-2B cells. Environment International, 2022, 166, 107366.                                                                                       | 4.8 | 18        |
| 62 | Application of direct thermal desorption gas chromatography time-of-flight mass spectrometry for determination of nonpolar organics in low-volume samples from ambient particulate matter and personal samplers. Analytical and Bioanalytical Chemistry, 2011, 401, 3083-3094.         | 1.9 | 17        |
| 63 | Pentachlorophenol in indoor environments. Correlation of PCP concentrations in air and settled dust from floors. Science of the Total Environment, 2000, 256, 125-132.                                                                                                                 | 3.9 | 16        |
| 64 | Seasonal variability and source distribution of haze particles from a continuous one-year study in<br>Beijing. Atmospheric Pollution Research, 2018, 9, 627-633.                                                                                                                       | 1.8 | 14        |
| 65 | Impact of meteorological conditions on airborne fine particle composition and secondary pollutant characteristics in urban area during winter-time. Meteorologische Zeitschrift, 2016, 25, 267-279.                                                                                    | 0.5 | 13        |
| 66 | Organic speciation of ambient quasi-ultrafine particulate matter (PM0.36) in Augsburg, Germany:<br>Seasonal variability and source apportionment. Science of the Total Environment, 2018, 615, 828-837.                                                                                | 3.9 | 13        |
| 67 | Analysis of mobile monitoring data from the microAeth® MA200 for measuring changes in black carbon on the roadside in Augsburg. Atmospheric Measurement Techniques, 2021, 14, 5139-5151.                                                                                               | 1.2 | 12        |
| 68 | Characteristics of chemical profile, sources and PAH toxicity of PM2.5 in beijing in autumn-winter transit season with regard to domestic heating, pollution control measures and meteorology. Chemosphere, 2021, 276, 130143.                                                         | 4.2 | 12        |
| 69 | Molecular Characterization of Water-Soluble Aerosol Particle Extracts by Ultrahigh-Resolution<br>Mass Spectrometry: Observation of Industrial Emissions and an Atmospherically Aged Wildfire Plume<br>at Lake Baikal. ACS Earth and Space Chemistry, 2022, 6, 1095-1107.               | 1.2 | 12        |
| 70 | Experimental and statistical determination of indicator parameters for the evaluation of fly ash and boiler ash PCDD/PCDF concentration from municipal solid waste incinerators. Chemosphere, 2007, 67, S155-S163.                                                                     | 4.2 | 11        |
| 71 | First field application of a thermal desorption resonance-enhanced multiphoton-ionisation single particle time-of-flight mass spectrometer for the on-line detection of particle-bound polycyclic aromatic hydrocarbons. Analytical and Bioanalytical Chemistry, 2011, 401, 3173-3182. | 1.9 | 11        |
| 72 | Carbonaceous aerosol composition in air masses influenced by large-scale biomass burning: a case study in northwestern Vietnam. Atmospheric Chemistry and Physics, 2021, 21, 8293-8312.                                                                                                | 1.9 | 11        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | New directions: Beyond sulphur, vanadium and nickel – About source apportionment of ship emissions<br>in emission control areas. Atmospheric Environment, 2017, 163, 190-191.                                                                     | 1.9 | 10        |
| 74 | Multi-channel silicone rubber traps as denuders for gas–particle partitioning of aerosols from<br>semi-volatile organic compounds. Environmental Sciences: Processes and Impacts, 2017, 19, 676-686.                                              | 1.7 | 9         |
| 75 | Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface. Environmental Research Letters, 2022, 17, 034032.                                                   | 2.2 | 9         |
| 76 | The effect of wind direction on the observed size distribution of particle adsorbed polycyclic<br>aromatic hydrocarbons on an inner city sampling site. Journal of Environmental Monitoring, 1999, 1,<br>357-360.                                 | 2.1 | 8         |
| 77 | Why air quality in the Alps remains a matter of concern. The impact of organic pollutants in the alpine area. Environmental Science and Pollution Research, 2014, 21, 252-267.                                                                    | 2.7 | 8         |
| 78 | An evaluation of the "GGP―personal samplers under semi-volatile aerosols: sampling losses and their<br>implication on occupational risk assessment. Environmental Sciences: Processes and Impacts, 2015, 17,<br>270-277.                          | 1.7 | 8         |
| 79 | Combined land-use and street view image model for estimating black carbon concentrations in urban<br>areas. Atmospheric Environment, 2021, 265, 118719.                                                                                           | 1.9 | 8         |
| 80 | SHORT-TERM EVAPORATION OF SEMI-VOLATILE N-ALKANE AEROSOL PARTICLES: EXPERIMENTAL AND COMPUTATIONAL APPROACH. Environmental Engineering and Management Journal, 2014, 13, 1775-1785.                                                               | 0.2 | 6         |
| 81 | Personal exposure to various size fractions of ambient particulate matter during the heating and non-heating periods using mobile monitoring approach: A case study in Augsburg, Germany. Atmospheric Pollution Research, 2022, 13, 101483.       | 1.8 | 6         |
| 82 | Corrigendum to "Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel<br>and heavy fuel oil operation―[Atmos. Environ. 94 (2014) 467–478]. Atmospheric Environment, 2015, 112,<br>369.                                  | 1.9 | 5         |
| 83 | Combustion process apportionment of carbonaceous particulate emission from a diesel fuel burner.<br>Journal of Aerosol Science, 2016, 100, 61-72.                                                                                                 | 1.8 | 5         |
| 84 | Organische Verbindungen in Feinstaub. Nachrichten Aus Der Chemie, 2006, 54, 676-680.                                                                                                                                                              | 0.0 | 4         |
| 85 | Semi-continuous sampling of health relevant atmospheric particle subfractions for chemical speciation using a rotating drum impactor in series with sequential filter sampler. Environmental Science and Pollution Research, 2016, 23, 7278-7287. | 2.7 | 4         |
| 86 | Spatial and temporal variation of sources contributing to quasi-ultrafine particulate matter PM0.36 in Augsburg, Germany. Science of the Total Environment, 2018, 631-632, 191-200.                                                               | 3.9 | 4         |
| 87 | Influence of New Year's fireworks on air quality – A case study from 2010 to 2021 in Augsburg,<br>Germany. Atmospheric Pollution Research, 2022, 13, 101341.                                                                                      | 1.8 | 4         |
| 88 | On the Complementarity and Informative Value of Different Electron Ionization Mass Spectrometric<br>Techniques for the Chemical Analysis of Secondary Organic Aerosols. ACS Earth and Space Chemistry,<br>2022, 6, 1358-1374.                     | 1.2 | 4         |
| 89 | Pentachlorophenol in indoor environments. Does a single measurement of air and dust<br>concentrations represent the contamination?. Journal of Environmental Monitoring, 1999, 1, 353-356.                                                        | 2.1 | 3         |
| 90 | Identification of the sources of primary organic aerosols at urban schools: A molecular marker approach. Environmental Pollution, 2014, 191, 158-165.                                                                                             | 3.7 | 3         |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Assessment of German population exposure levels to PM10 based on multiple spatial-temporal data.<br>Environmental Science and Pollution Research, 2020, 27, 6637-6648.                                               | 2.7 | 3         |
| 92 | SmartAQnet: remote and in-situ sensing of urban air quality. , 2017, , .                                                                                                                                             |     | 3         |
| 93 | Development of a Personal Aerosol Sampler for Monitoring the Particle–Vapour Fractionation of SVOCs in Workplaces. Annals of Work Exposures and Health, 2020, 64, 903-908.                                           | 0.6 | 2         |
| 94 | Carbonaceous Monolithic Multi-Channel Denuders as Vapour–Particle Partitioning Tools for the<br>Occupational Sampling of Semi-Volatile Organic Compounds. Annals of Work Exposures and Health,<br>2018, 62, 899-903. | 0.6 | 0         |
| 95 | Emissions of Organic and Inorganic Pollutants During the Combustion of Wood, Straw and Biogas. , 2013, , 387-422.                                                                                                    |     | 0         |
| 96 | Smart Air Quality Network for spatial high-resolution monitoring in urban area. , 2018, , .                                                                                                                          |     | 0         |
| 97 | Assessment of three-dimensional, fine-granular measurement of particulate matter by a smart air quality network in urban area. , 2019, , .                                                                           |     | 0         |