Michaël Aubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9501374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Short-term dynamic responses of soil properties and soil fauna under contrasting tillage systems. Soil and Tillage Research, 2022, 215, 105191.	5.6	17
2	Size fractions of organic matter pools influence their stability: Application of the Rock-Eval® analysis to beech forest soils. Pedosphere, 2022, 32, 565-575.	4.0	2
3	A Standardized Morpho-Functional Classification of the Planet's Humipedons. Soil Systems, 2022, 6, 59.	2.6	7
4	The climatic debt is growing in the understorey of temperate forests: Stand characteristics matter. Global Ecology and Biogeography, 2021, 30, 1474-1487.	5.8	28
5	Pond creation and restoration: patterns of odonate colonization and community dynamics. Biodiversity and Conservation, 2021, 30, 4379-4399.	2.6	4
6	Combined forest and soil management after a catastrophic event. Journal of Mountain Science, 2020, 17, 2459-2484.	2.0	4
7	Solar UV-A radiation and blue light enhance tree leaf litter decomposition in a temperate forest. Oecologia, 2019, 191, 191-203.	2.0	30
8	<i>TerrHum</i> : An iOS Application for Classifying Terrestrial Humipedons and Some Considerations about Soil Classification. Soil Science Society of America Journal, 2019, 83, S42.	2.2	5
9	Forest humus forms as a playground for studying aboveground-belowground relationships: Part 2, a case study along the dynamics of a broadleaved plain forest ecosystem. Applied Soil Ecology, 2018, 123, 398-408.	4.3	2
10	Humusica 1, article 4: Terrestrial humus systems and forms — Specific terms and diagnostic horizons. Applied Soil Ecology, 2018, 122, 56-74.	4.3	33
11	Humusica 1, article 5: Terrestrial humus systems and forms — Keys of classification of humus systems and forms. Applied Soil Ecology, 2018, 122, 75-86.	4.3	45
12	Forest humus forms as a playground for studying aboveground-belowground relationships: Part 1, theoretical backgrounds. Applied Soil Ecology, 2018, 123, 391-397.	4.3	3
13	Humusica 2, article 17: techno humus systems and global change â^ three crucial questions. Applied Soil Ecology, 2018, 122, 237-253.	4.3	7
14	Humusica 1, article 1: Essential bases – Vocabulary. Applied Soil Ecology, 2018, 122, 10-21.	4.3	16
15	Plasticity in leaf litter traits partly mitigates the impact of thinning on forest floor carbon cycling. Functional Ecology, 2018, 32, 2777-2789.	3.6	8
16	Soil fauna as bioindicators of organic matter export in temperate forests. Forest Ecology and Management, 2018, 429, 549-557.	3.2	13
17	Plant interactions as biotic drivers of plasticity in leaf litter traits and decomposability of <i>Quercus petraea</i> . Ecological Monographs, 2017, 87, 321-340.	5.4	20
18	Introduction of Faba bean in crop rotation: Impacts on soil chemical and biological characteristics. Applied Soil Ecology, 2017, 120, 219-228.	4.3	57

MICHAëL AUBERT

#	Article	IF	CITATIONS
19	Forest plant community as a driver of soil biodiversity: experimental evidence from collembolan assemblages through largeâ€scale and longâ€term removal of oak canopy trees <i>Quercus petraea</i> . Oikos, 2017, 126, 420-434.	2.7	29
20	Slow decomposition of leaf litter from mature <i>Fagus sylvatica</i> trees promotes offspring nitrogen acquisition by interacting with ectomycorrhizal fungi. Journal of Ecology, 2017, 105, 528-539.	4.0	24
21	Tree species richness induces strong intraspecific variability of beech (Fagus sylvatica) leaf traits and alleviates edaphic stress. European Journal of Forest Research, 2016, 135, 707-717.	2.5	17
22	Dynamics of soil organic matter based on new Rock-Eval indices. Geoderma, 2016, 284, 185-203.	5.1	67
23	Forest management adaptation to climate change: a Cornelian dilemma between drought resistance and soil macroâ€detritivore functional diversity. Journal of Applied Ecology, 2015, 52, 913-927.	4.0	14
24	Liming impacts Fagus sylvatica leaf traits and litter decomposition 25 years after amendment. Forest Ecology and Management, 2015, 353, 67-76.	3.2	19
25	A comparison of permanent and fluctuating flooding on microbial properties in an ex-situ estuarine riparian system. Applied Soil Ecology, 2014, 78, 1-10.	4.3	8
26	Home-Field Advantage: A matter of interaction between litter biochemistry and decomposer biota. Soil Biology and Biochemistry, 2013, 67, 245-254.	8.8	83
27	PLS-regressions highlight litter quality as the major predictor of humus form shift along forest maturation. Soil Biology and Biochemistry, 2013, 57, 969-971.	8.8	27
28	Forest ageing: An unexpected driver of beech leaf litter quality variability in European forests with strong consequences on soil processes. Forest Ecology and Management, 2013, 302, 338-345.	3.2	59
29	Niche overlap and species assemblage dynamics in an ageing pasture gradient in north-western France. Acta Oecologica, 2011, 37, 212-219.	1.1	31
30	Does moder development along a pure beech (Fagus sylvatica L.) chronosequence result from changes in litter production or in decomposition rates?. Soil Biology and Biochemistry, 2011, 43, 1490-1497.	8.8	29
31	Humus macro-morphology and soil microbial community changes along a 130-yr-old Fagus sylvatica chronosequence. Soil Biology and Biochemistry, 2011, 43, 1553-1562.	8.8	22
32	Changes in humus forms and soil N pathways along a 130-year-old pure beech forest chronosequence. Annals of Forest Science, 2011, 68, 595-606.	2.0	11
33	Aboveground–belowground relationships in temperate forests: Plant litter composes and microbiota orchestrates. Forest Ecology and Management, 2010, 259, 563-572.	3.2	48
34	Changes in soil N mineralization and nitrification pathways along a mixed forest chronosequence. Forest Ecology and Management, 2009, 258, 1284-1292.	3.2	32
35	Assembly rules within earthworm communities in North-Western France—A regional analysis. Applied Soil Ecology, 2008, 39, 321-335.	4.3	106
36	Dynamics of soil carbon in a beechwood chronosequence forest. Forest Ecology and Management, 2008, 255, 193-202.	3.2	30

MICHAëL AUBERT

#	Article	IF	CITATIONS
37	Beech leaf degradation in laboratory experiments: Effects of eight detritivorous invertebrate species. Applied Soil Ecology, 2007, 35, 291-301.	4.3	32
38	Impact of forest management on the diversity of corticolous bryophyte assemblages in temperate forests. Biological Conservation, 2007, 139, 47-66.	4.1	37
39	Soil detritivore macro-invertebrate assemblages throughout a managed beech rotation. Annals of Forest Science, 2007, 64, 219-228.	2.0	34
40	Soil invertebrates andÂecosystem services. European Journal of Soil Biology, 2006, 42, S3-S15.	3.2	1,050
41	Variability and heterogeneity of humus forms at stand level: Comparison between pure beech and mixed beech-hornbeam forest. Annals of Forest Science, 2006, 63, 177-188.	2.0	31
42	Silviculture-driven vegetation change in a European temperate deciduous forest. Annals of Forest Science, 2005, 62, 313-323.	2.0	64
43	Sources of spatial and temporal variability of inorganic nitrogen in pure and mixed deciduous temperate forests. Soil Biology and Biochemistry, 2005, 37, 67-79.	8.8	20
44	Plant diversity in a managed temperate deciduous forest: understorey response to two silvicultural systems. Journal of Applied Ecology, 2004, 41, 1065-1079.	4.0	239
45	Effect of tree mixture on the humic epipedon and vegetation diversity in managed beech forests (Normandy, France). Canadian Journal of Forest Research, 2004, 34, 233-248.	1.7	60
46	Diversity of plant assemblages in managed temperate forests: a case study in Normandy (France). Forest Ecology and Management, 2003, 175, 321-337.	3.2	46
47	Effects of tree canopy composition on earthworms and other macro-invertebrates in beech forests of Upper Normandy (France). Pedobiologia, 2003, 47, 904-912.	1.2	8
48	Effects of tree canopy composition on earthworms and other macro-invertebrates in beech forests of Upper Normandy (France)The 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia, 2003, 47, 904-912.	1.2	55
49	Biodiversity and Ecosystem Functions in Wetlands: A Case Study in the Estuary of the Seine River, France. Estuaries and Coasts, 2001, 24, 1088.	1.7	22

The Best of Both Worlds? Hybridization Potentiates Exotic Bohemian Knotweed's (Reynoutria ×) Tj ETQq0 0 0 rgBT /Overlock 10 T