Longjiang Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9501340/publications.pdf

Version: 2024-02-01

		87888	1	10387	
103	4,780 citations	38		64	
papers	citations	h-index		g-index	
107	107	107		5742	
107	107	107		3772	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Recent origination of circular RNAs in plants. New Phytologist, 2022, 233, 515-525.	7.3	14
2	Twenty years of plant genome sequencing: achievements and challenges. Trends in Plant Science, 2022, 27, 391-401.	8.8	125
3	Weedy rice, a hidden gold mine in the paddy field. Molecular Plant, 2022, 15, 566-568.	8.3	8
4	The complete chloroplast genome of Nicotiana plumbaginifolia. Mitochondrial DNA Part B: Resources, 2022, 7, 239-240.	0.4	0
5	Genomic insights into the evolution of Echinochloa species as weed and orphan crop. Nature Communications, 2022, 13, 689.	12.8	26
6	Population genomic analysis reveals domestication of cultivated rye from weedy rye. Molecular Plant, 2022, 15, 552-561.	8.3	19
7	Horizontal transfer and evolution of the biosynthetic gene cluster for benzoxazinoids in plants. Plant Communications, 2022, 3, 100320.	7.7	16
8	The whole chloroplast genome of <i>Secale strictum</i> subsp <i>. kuprijanovii,</i> a wild and perennial kinship to cultivated rye. Mitochondrial DNA Part B: Resources, 2022, 7, 112-114.	0.4	0
9	PlantcircBase 7.0: Full-length transcripts and conservation of plant circRNAs. Plant Communications, 2022, 3, 100343.	7.7	8
10	Multi-omics molecular biomarkers and database of osteoarthritis. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	3.0	5
11	Lateral transfers lead to the birth of momilactone biosynthetic gene clusters in grass. Plant Journal, 2022, 111, 1354-1367.	5.7	8
12	TOD-CUP: a gene expression rank-based majority vote algorithm for tissue origin diagnosis of cancers of unknown primary. Briefings in Bioinformatics, 2021, 22, 2106-2118.	6.5	12
13	Orphan Crops and their Wild Relatives in the Genomic Era. Molecular Plant, 2021, 14, 27-39.	8.3	48
14	Age, Gender and Geographic Differences in Global Health Burden of Cirrhosis and Liver Cancer due to Nonalcoholic Steatohepatitis. Journal of Cancer, 2021, 12, 2855-2865.	2.5	9
15	An ABCC-type transporter endowing glyphosate resistance in plants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	85
16	scDetect: a rank-based ensemble learning algorithm for cell type identification of single-cell RNA sequencing in cancer. Bioinformatics, 2021, 37, 4115-4122.	4.1	3
17	De-Domestication: An Extension of Crop Evolution. Trends in Plant Science, 2021, 26, 560-574.	8.8	40
18	PlantscRNAdb: A database for plant single-cell RNA analysis. Molecular Plant, 2021, 14, 855-857.	8.3	48

#	Article	IF	Citations
19	Rice bioinformatics in the genomic era: Status and perspectives. Crop Journal, 2021, 9, 609-621.	5.2	9
20	miR-377-3p-Mediated EGR1 Downregulation Promotes B[a]P-Induced Lung Tumorigenesis by Wnt/Beta-Catenin Transduction. Frontiers in Oncology, 2021, 11, 699004.	2.8	8
21	Signaling pathway perturbation analysis for assessment of biological impact of cigarette smoke on lung cells. Scientific Reports, 2021, 11, 16715.	3.3	5
22	The complete chloroplast genome of <i>Echinochloa haploclada</i> Resources, 2021, 6, 3105-3106.	0.4	2
23	Large-scale identification of extracellular plant miRNAs in mammals implicates their dietary intake. PLoS ONE, 2021, 16, e0257878.	2.5	6
24	The complete chloroplast genome of weedy rice Oryza sativa f. spontanea. Mitochondrial DNA Part B: Resources, 2021, 6, 3016-3017.	0.4	1
25	Effects of Sample Size on Plant Single-Cell RNA Profiling. Current Issues in Molecular Biology, 2021, 43, 1685-1697.	2.4	4
26	Quinclorac resistance in Echinochloa phyllopogon is associated with reduced ethylene synthesis rather than enhanced cyanide detoxification by βâ€cyanoalanine synthase. Pest Management Science, 2020, 76, 1195-1204.	3.4	16
27	Genomic evidence for convergent evolution of gene clusters for momilactone biosynthesis in land plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12472-12480.	7.1	73
28	Diverse genetic mechanisms underlie worldwide convergent rice feralization. Genome Biology, 2020, 21, 70.	8.8	55
29	Identification and Characterization of γ-Ray-Induced Mutations in Rice Cytoplasmic Genomes by Whole-Genome Sequencing. Cytogenetic and Genome Research, 2020, 160, 100-109.	1.1	6
30	The Genomes of the Allohexaploid Echinochloa crus-galli and Its Progenitors Provide Insights into Polyploidization-Driven Adaptation. Molecular Plant, 2020, 13, 1298-1310.	8.3	47
31	Expansion of <i>MIR482/2118</i> by a classâ€I transposable element in cotton. Plant Journal, 2020, 103, 2084-2099.	5.7	15
32	Gene Modules Co-regulated with Biosynthetic Gene Clusters for Allelopathy between Rice and Barnyardgrass. International Journal of Molecular Sciences, 2019, 20, 3846.	4.1	9
33	Characterization and evolution of gene clusters for terpenoid phytoalexin biosynthesis in tobacco. Planta, 2019, 250, 1687-1702.	3.2	11
34	Elimination of a Retrotransposon for Quenching Genome Instability in Modern Rice. Molecular Plant, 2019, 12, 1395-1407.	8.3	12
35	RiceRelativesGD: a genomic database of rice relatives for rice research. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	13
36	A Suppressor Mutation Partially Reverts the xantha Trait via Lowered Methylation in the Promoter of Genomes Uncoupled 4 in Rice. Frontiers in Plant Science, 2019, 10, 1003.	3.6	14

#	Article	IF	CITATIONS
37	Genomic evidence of human selection on Vavilovian mimicry. Nature Ecology and Evolution, 2019, 3, 1474-1482.	7.8	38
38	Bi-directional Selection in Upland Rice Leads to Its Adaptive Differentiation from Lowland Rice in Drought Resistance and Productivity. Molecular Plant, 2019, 12, 170-184.	8.3	48
39	Genomeâ€wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed. Plant Biotechnology Journal, 2019, 17, 1998-2010.	8.3	54
40	A transcriptomic profile of topping responsive non-coding RNAs in tobacco roots (Nicotiana) Tj ETQq0 0 0 rgBT	/Overlock 2.8	10 Tf 50 622
41	Aldo-keto Reductase Metabolizes Glyphosate and Confers Glyphosate Resistance in <i>Echinochloa colona</i> . Plant Physiology, 2019, 181, 1519-1534.	4.8	97
42	The power and potential of genomics in weed biology and management. Pest Management Science, 2018, 74, 2216-2225.	3.4	76
43	Construction of the third-generation Zea mays haplotype map. GigaScience, 2018, 7, 1-12.	6.4	191
44	A naive Bayes algorithm for tissue origin diagnosis (TODâ€Bayes) of synchronous multifocal tumors in the hepatobiliary and pancreatic system. International Journal of Cancer, 2018, 142, 357-368.	5.1	16
45	Characteristics of plant circular RNAs. Briefings in Bioinformatics, 2018, , .	6.5	37
46	Genomic Clues for Crop–Weed Interactions and Evolution. Trends in Plant Science, 2018, 23, 1102-1115.	8.8	44
47	Genome-wide identification of oil biosynthesis-related long non-coding RNAs in allopolyploid Brassica napus. BMC Genomics, 2018, 19, 745.	2.8	38
48	The Circular RNA Profiles of Colorectal Tumor Metastatic Cells. Frontiers in Genetics, 2018, 9, 34.	2.3	55
49	Accumulation of high OPDA level correlates with reduced ROS and elevated GSH benefiting white cell survival in variegated leaves. Scientific Reports, 2017, 7, 44158.	3.3	17
50	Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid <i>Brassica napus</i> uncovers key roles for small <scp>RNA</scp> s. Plant Journal, 2017, 91, 874-893.	5.7	95
51	Genomic variation associated with local adaptation of weedy rice during de-domestication. Nature Communications, 2017, 8, 15323.	12.8	132
52	PlantcircBase: A Database for Plant Circular RNAs. Molecular Plant, 2017, 10, 1126-1128.	8.3	131
53	Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nature Communications, 2017, 8, 1031.	12.8	138
54	Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biology, 2017, 14, 1055-1063.	3.1	113

#	Article	IF	CITATIONS
55	Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. DNA Research, 2017, 24, 635-648.	3.4	58
56	Identifying the clonal origin of synchronous multifocal tumors in the hepatobiliary and pancreatic system using multi-omic platforms. Oncotarget, 2017, 8, 5016-5025.	1.8	9
57	Gibberellin deficiency is responsible for shy-flowering nature of Epipremnum aureum. Scientific Reports, 2016, 6, 28598.	3.3	16
58	Nicotine biosynthesis is regulated by two more layers: Small and long non-protein-coding RNAs. Plant Signaling and Behavior, 2016, 11, e1184811.	2.4	25
59	PcircRNA_finder: a software for circRNA prediction in plants. Bioinformatics, 2016, 32, 3528-3529.	4.1	60
60	Widespread noncoding circular <scp>RNA</scp> s in plants. New Phytologist, 2015, 208, 88-95.	7.3	374
61	A host plant genome (<i>Zizania latifolia</i>) after a centuryâ€long endophyte infection. Plant Journal, 2015, 83, 600-609.	5.7	67
62	Analysis of genetic variation and diversity of Rice stripe virus populations through high-throughput sequencing. Frontiers in Plant Science, 2015, 6, 176.	3.6	37
63	Identification, evolution, and expression partitioning of miRNAs in allopolyploid <i>Brassica napus</i> Journal of Experimental Botany, 2015, 66, 7241-7253.	4.8	44
64	Regulation of Nicotine Biosynthesis by an Endogenous Target Mimicry of MicroRNA in Tobacco. Plant Physiology, 2015, 169, 1062-1071.	4.8	96
65	Genome Re-Sequencing of Semi-Wild Soybean Reveals a Complex Soja Population Structure and Deep Introgression. PLoS ONE, 2014, 9, e108479.	2.5	26
66	Echinochloa Chloroplast Genomes: Insights into the Evolution and Taxonomic Identification of Two Weedy Species. PLoS ONE, 2014, 9, e113657.	2.5	47
67	Genome-wide identification of non-coding RNAs interacted with microRNAs in soybean. Frontiers in Plant Science, 2014, 5, 743.	3.6	53
68	Identification and characterization of micro <scp>RNA</scp> s in oilseed rape (<i>Brassica napus</i>) responsive to infection with the pathogenic fungus <i>Verticillium longisporum</i> using <i>Brassica </i> <scp>AA</scp> (<i>BrassicaÂrapa</i>) and <scp>CC</scp> (<i>BrassicaÂoleracea</i>) as reference genomes. New Phytologist, 2014, 204, 577-594.	7.3	79
69	Genome re-sequencing suggested a weedy rice origin from domesticated indica-japonica hybridization: a case study from southern China. Planta, 2014, 240, 1353-1363.	3.2	47
70	A diverse set of miRNAs responsive to begomovirus-associated betasatellite in Nicotiana benthamiana. BMC Plant Biology, 2014, 14, 60.	3.6	19
71	Impact of Maternal Nicotine Exposure on Expression of Myelin-Related Genes in Zebrafish Larvae. Zebrafish, 2014, 11, 10-16.	1,1	9
72	Development of DArT markers for a linkage map of flue-cured tobacco. Science Bulletin, 2013, 58, 641-648.	1.7	20

#	Article	IF	Citations
73	Mapping epistasis and environment×QTX interaction based on four -omics genotypes for the detected QTX loci controlling complex traits in tobacco. Crop Journal, 2013, 1, 151-159.	5.2	6
74	Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene, 2013, 512, 259-266.	2.2	120
75	Alteration of the Alkaloid Profile in Genetically Modified Tobacco Reveals a Role of Methylenetetrahydrofolate Reductase in Nicotine <i>N</i> -Demethylation Â. Plant Physiology, 2013, 161, 1049-1060.	4.8	12
76	miR482 Regulation of NBS-LRR Defense Genes during Fungal Pathogen Infection in Cotton. PLoS ONE, 2013, 8, e84390.	2.5	163
77	Identification of phasiRNAs in wild rice (<i>Oryza rufipogon</i>). Plant Signaling and Behavior, 2013, 8, e25079.	2.4	38
78	Genomic dissection of small <scp>RNA</scp> s in wild rice (<i>Oryza rufipogon</i>): lessons for rice domestication. New Phytologist, 2012, 196, 914-925.	7.3	33
79	A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC Plant Biology, 2012, 12, 238.	3.6	94
80	Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum). BMC Plant Biology, 2012, 12, 28.	3.6	68
81	Genome Sequence of the Tobacco Bacterial Wilt Pathogen Ralstonia solanacearum. Journal of Bacteriology, 2011, 193, 6088-6089.	2.2	57
82	iSNAP: a small RNAâ€based molecular marker technique. Plant Breeding, 2011, 130, 515-520.	1.9	9
83	Ancient DNA sequences of rice from the low Yangtze reveal significant genotypic divergence. Science Bulletin, 2011, 56, 3108.	1.7	6
84	Genome Sequence of Bacillus subtilis subsp. spizizenii gtP20b, Isolated from the Indian Ocean. Journal of Bacteriology, 2011, 193, 1276-1277.	2.2	23
85	Draft Genome Sequence of the Marine Streptomyces sp. Strain PP-C42, Isolated from the Baltic Sea. Journal of Bacteriology, 2011, 193, 3691-3692.	2.2	15
86	Characterization of Small Interfering RNAs Derived from the Geminivirus/Betasatellite Complex Using Deep Sequencing. PLoS ONE, 2011, 6, e16928.	2.5	81
87	Identification of NBS-Type Resistance Gene Homologs in Tobacco Genome. Plant Molecular Biology Reporter, 2010, 28, 152-161.	1.8	13
88	Sequence variation and selection of small RNAs in domesticated rice. BMC Evolutionary Biology, 2010, 10, 119.	3.2	32
89	Molecular phylogeny of miR390-guided trans-acting siRNA genes (TAS3) in the grass family. Plant Systematics and Evolution, 2009, 283, 125-132.	0.9	18
90	Post-Domestication Selection in the Maize Starch Pathway. PLoS ONE, 2009, 4, e7612.	2.5	32

#	Article	IF	CITATIONS
91	Molecular evidence for post-domestication selection in the Waxy gene of Chinese waxy maize. Molecular Breeding, 2008, 22, 329-338.	2.1	49
92	Chloroplast DNA insertions into the nuclear genome of rice: the genes, sites and ages of insertion involved. Functional and Integrative Genomics, 2008, 8, 101-108.	3.5	29
93	Assessment of codivergence of Mastreviruses with their plant hosts. BMC Evolutionary Biology, 2008, 8, 335.	3.2	43
94	Selection and mutation on microRNA target sequences during rice evolution. BMC Genomics, 2008, 9, 454.	2.8	45
95	A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Research, 2008, 18, 1456-1465.	5 . 5	332
96	Evidence of selectively driven codon usage in rice: Implications for GC content evolution of Gramine aegenes. FEBS Letters, 2007, 581, 1015-1021.	2.8	42
97	Molecular evolution and selection of a gene encoding two tandem microRNAs in rice. FEBS Letters, 2007, 581, 4789-4793.	2.8	37
98	Patterns of selective constraints in noncoding DNA of rice. BMC Evolutionary Biology, 2007, 7, 208.	3.2	20
99	Genome size and sequence composition of moso bamboo: A comparative study. Science in China Series C: Life Sciences, 2007, 50, 700-705.	1.3	42
100	Effect of the pollen of transgenic rice line, TT9-3 with a fused cry1Ab/cry1Ac gene from Bacillus thuringiensis Berliner on non-target domestic silkworm, Bombyx mori Linnaeus (Lepidoptera:) Tj ETQq0 0 0 rgBT	/Overlock	. 1 0. ₹f 50 377
101	A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet. Molecular Genetics and Genomics, 2006, 275, 504-511.	2.1	25
102	The Absence of TIR-Type Resistance Gene Analogues in the Sugar Beet (Beta vulgaris L.) Genome. Journal of Molecular Evolution, 2004, 58, 40-53.	1.8	48
103	Genetic and genotype × environment interaction effects from embryo, endosperm, cytoplasm and maternal plant for rice grain shape traits of indica rice. Field Crops Research, 2000, 68, 191-198.	5.1	22