Min-Rui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/950099/publications.pdf

Version: 2024-02-01

24 610 14 23
papers citations h-index g-index

25 25 25 331 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Doubleâ€edged effects of the cryogenic technique for virus eradication and preservation in shallot shoot tips. Plant Pathology, 2022, 71, 494-504.	2.4	5
2	Micrografting: An Old Dog Plays New Tricks in Obligate Plant Pathogens. Plant Disease, 2022, 106, 2545-2557.	1.4	2
3	Shoot tip cryotherapy for plant pathogen eradication. Plant Pathology, 2022, 71, 1241-1254.	2.4	12
4	Long-Term Preservation of Plant Viruses in Cryopreserved Shoot Tips. Methods in Molecular Biology, 2022, 2400, 187-195.	0.9	0
5	In Vitro Micrografting of Horticultural Plants: Method Development and the Use for Micropropagation. Horticulturae, 2022, 8, 576.	2.8	4
6	Assessments of rooting, vegetative growth, bulb production, genetic integrity and biochemical compounds in cryopreserved plants of shallot. Plant Cell, Tissue and Organ Culture, 2021, 144, 123-131.	2.3	8
7	Advances in cryopreservation of in vitro-derived propagules: technologies and explant sources. Plant Cell, Tissue and Organ Culture, 2021, 144, 7-20.	2.3	62
8	Combining thermotherapy with meristem culture for improved eradication of onion yellow dwarf virus and shallot latent virus from infected in vitroâ€cultured shallot shoots. Annals of Applied Biology, 2021, 178, 442-449.	2.5	7
9	Epigenetic and Genetic Integrity, Metabolic Stability, and Field Performance of Cryopreserved Plants. Plants, 2021, 10, 1889.	3.5	22
10	ROS-induced oxidative stress in plant cryopreservation: occurrence and alleviation. Planta, 2021, 254, 124.	3.2	37
11	Droplet-vitrification for shoot tip cryopreservation of shallot (Allium cepa var. aggregatum): effects of PVS3 and PVS2 on shoot regrowth. Plant Cell, Tissue and Organ Culture, 2020, 140, 185-195.	2.3	22
12	In vitro tissue culture of apple and other Malus species: recent advances and applications. Planta, 2019, 249, 975-1006.	3.2	42
13	Development, progress and future prospects in cryobiotechnology of Lilium spp Plant Methods, 2019, 15, 125.	4.3	22
14	Cryobiotechnology of apple (Malus spp.): development, progress and future prospects. Plant Cell Reports, 2018, 37, 689-709.	5.6	69
15	Combining Thermotherapy with Cryotherapy for Efficient Eradication of <i>Apple stem grooving virus </i> from Infected In-vitro-cultured Apple Shoots. Plant Disease, 2018, 102, 1574-1580.	1.4	38
16	Cryobiotechnology of forest trees: recent advances and future prospects. Biodiversity and Conservation, 2018, 27, 795-814.	2.6	27
17	Long-term preservation of potato leafroll virus, potato virus S, and potato spindle tuber viroid in cryopreserved shoot tips. Applied Microbiology and Biotechnology, 2018, 102, 10743-10754.	3.6	10
18	In vitro thermotherapy-based methods for plant virus eradication. Plant Methods, 2018, 14, 87.	4.3	67

#	Article	IF	CITATION
19	Cryopreservation of virus: a novel biotechnology for long-term preservation of virus in shoot tips. Plant Methods, 2018, 14, 47.	4.3	17
20	Cryotherapy: A Novel Method for Virus Eradication in Economically Important Plant Species. Methods in Molecular Biology, 2018, 1815, 257-268.	0.9	12
21	Virus infection reduces shoot proliferation of in vitro stock cultures and ability of cryopreserved shoot tips to regenerate into normal shoots in †Gala†apple (Malus × domestica). Cryobiology, 2018, 84, 52-58.	0.7	6
22	Culture of shoot tips from adventitious shoots can eradicate Apple stem pitting virus but fails in Apple stem grooving virus. Plant Cell, Tissue and Organ Culture, 2016, 125, 283-291.	2.3	38
23	Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures. Journal of Biotechnology, 2015, 214, 182-191.	3.8	42
24	Shoot regeneration and cryopreservation of shoot tips of apple (Malus) by encapsulation–dehydration. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 357-368.	2.1	39