
## Eric A Treml

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9500559/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Graph models of habitat mosaics. Ecology Letters, 2009, 12, 260-273.                                                                                                                           | 3.0 | 467       |
| 2  | Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landscape Ecology, 2008, 23, 19-36.                                                    | 1.9 | 400       |
| 3  | Marine Geospatial Ecology Tools: An integrated framework for ecological geoprocessing with ArcGIS,<br>Python, R, MATLAB, and C++. Environmental Modelling and Software, 2010, 25, 1197-1207.   | 1.9 | 300       |
| 4  | Population connectivity: recent advances and new perspectives. Landscape Ecology, 2013, 28, 165-185.                                                                                           | 1.9 | 262       |
| 5  | Reproductive Output and Duration of the Pelagic Larval Stage Determine Seascape-Wide Connectivity of Marine Populations. Integrative and Comparative Biology, 2012, 52, 525-537.               | 0.9 | 211       |
| 6  | Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS<br>Genetics, 2018, 14, e1007220.                                                              | 1.5 | 184       |
| 7  | Migratory connectivity magnifies the consequences of habitat loss from sea-level rise for shorebird populations. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130325. | 1.2 | 173       |
| 8  | Effects of geography and life history traits on genetic differentiation in benthic marine fishes.<br>Ecography, 2011, 34, 566-575.                                                             | 2.1 | 141       |
| 9  | Incorporating asymmetric connectivity into spatial decision making for conservation. Conservation Letters, 2010, 3, 359-368.                                                                   | 2.8 | 119       |
| 10 | Integrating regional conservation priorities for multiple objectives into national policy. Nature Communications, 2015, 6, 8208.                                                               | 5.8 | 113       |
| 11 | Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Environmental Epigenetics, 2016, 62, 581-601.                                       | 0.9 | 108       |
| 12 | Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of<br>larval dispersal in the sea. Movement Ecology, 2015, 3, 17.                              | 1.3 | 105       |
| 13 | Integrating multiple species connectivity and habitat quality into conservation planning for coral reefs. Ecography, 2016, 39, 649-664.                                                        | 2.1 | 97        |
| 14 | High connectivity among habitats precludes the relationship between dispersal and range size in tropical reef fishes. Ecography, 2012, 35, 89-96.                                              | 2.1 | 90        |
| 15 | Evolving coral reef conservation with genetic information. Bulletin of Marine Science, 2014, 90, 159-185.                                                                                      | 0.4 | 89        |
| 16 | Incorporating larval dispersal into <scp>MPA</scp> design for both conservation and fisheries.<br>Ecological Applications, 2017, 27, 925-941.                                                  | 1.8 | 83        |
| 17 | Marine population connectivity identifies ecological neighbors for conservation planning in the Coral Triangle. Conservation Letters, 2012, 5, 441-449.                                        | 2.8 | 79        |
| 18 | Prioritizing Land and Sea Conservation Investments to Protect Coral Reefs. PLoS ONE, 2010, 5, e12431.                                                                                          | 1.1 | 78        |

ERIC A TREML

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | How do dispersal costs and habitat selection influence realized population connectivity?. Ecology, 2012, 93, 1378-1387.                                                               | 1.5 | 75        |
| 20 | Dispersal Capacity Predicts Both Population Genetic Structure and Species Richness in Reef Fishes.<br>American Naturalist, 2014, 184, 52-64.                                          | 1.0 | 70        |
| 21 | No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine<br>Protected Area Networks. PLoS ONE, 2015, 10, e0144199.                     | 1.1 | 70        |
| 22 | Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect.<br>Methods in Ecology and Evolution, 2020, 11, 570-579.                                | 2.2 | 69        |
| 23 | Exploring the role of Micronesian islands in the maintenance of coral genetic diversity in the Pacific<br>Ocean. Molecular Ecology, 2015, 24, 70-82.                                  | 2.0 | 68        |
| 24 | The emergent geography of biophysical dispersal barriers across the Indoâ€West Pacific. Diversity and Distributions, 2015, 21, 465-476.                                               | 1.9 | 68        |
| 25 | Coalescent and biophysical models of steppingâ€stone gene flow in neritid snails. Molecular Ecology,<br>2012, 21, 5579-5598.                                                          | 2.0 | 65        |
| 26 | Evaluating the metapopulation consequences of ecological traps. Proceedings of the Royal Society B:<br>Biological Sciences, 2015, 282, 20142930.                                      | 1.2 | 65        |
| 27 | Does fish larval dispersal differ between high and low latitudes?. Proceedings of the Royal Society B:<br>Biological Sciences, 2013, 280, 20130327.                                   | 1.2 | 60        |
| 28 | Taking the Plunge: An Introduction to Undertaking Seascape Genetic Studies and using Biophysical<br>Models. Geography Compass, 2013, 7, 173-196.                                      | 1.5 | 58        |
| 29 | Analyzing the (mis)fit between the institutional and ecological networks of the Indo-West Pacific.<br>Global Environmental Change, 2015, 31, 263-271.                                 | 3.6 | 54        |
| 30 | Estimating the potential for coral adaptation to global warming across the Indoâ€West Pacific. Clobal<br>Change Biology, 2020, 26, 3473-3481.                                         | 4.2 | 54        |
| 31 | Network analysis reveals strong seasonality in the dispersal of a marine parasite and identifies areas for coordinated management. Landscape Ecology, 2017, 32, 1953-1967.            | 1.9 | 52        |
| 32 | Vicariance and dispersal across an intermittent barrier: population genetic structure of marine animals across the Torres Strait land bridge. Coral Reefs, 2011, 30, 937-949.         | 0.9 | 48        |
| 33 | Seascape features, rather than dispersal traits, predict spatial genetic patterns in coâ€distributed reef<br>fishes. Journal of Biogeography, 2016, 43, 256-267.                      | 1.4 | 48        |
| 34 | Marine Reserve Targets to Sustain and Rebuild Unregulated Fisheries. PLoS Biology, 2017, 15, e2000537.                                                                                | 2.6 | 48        |
| 35 | A Novel Widespread Cryptic Species and Phylogeographic Patterns within Several Giant Clam Species<br>(Cardiidae: Tridacna) from the Indo-Pacific Ocean. PLoS ONE, 2013, 8, e80858.    | 1.1 | 46        |
| 36 | The DNA of coral reef biodiversity: predicting and protecting genetic diversity of reef assemblages.<br>Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160354. | 1.2 | 45        |

Eric A Treml

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Coral reef resilience to thermal stress in the Eastern Tropical Pacific. Global Change Biology, 2020, 26, 3880-3890.                                                                                                            | 4.2 | 45        |
| 38 | The scope of published population genetic data for Indo-Pacific marine fauna and future research opportunities in the region. Bulletin of Marine Science, 2014, 90, 47-78.                                                      | 0.4 | 44        |
| 39 | The molecular biogeography of the Indoâ€Pacific: Testing hypotheses with multispecies genetic patterns.<br>Global Ecology and Biogeography, 2019, 28, 943-960.                                                                  | 2.7 | 43        |
| 40 | The Eastern Tropical Pacific coral population connectivity and the role of the Eastern Pacific Barrier.<br>Scientific Reports, 2018, 8, 9354.                                                                                   | 1.6 | 33        |
| 41 | Return of the ghosts of dispersal past: historical spread and contemporary gene flow in the blue sea<br>star <l>Linckia laevigata</l> . Bulletin of Marine Science, 2014, 90, 399-425.                                          | 0.4 | 32        |
| 42 | Local and regional scale habitat heterogeneity contribute to genetic adaptation in a commercially<br>important marine mollusc ( <i>Haliotis rubra</i> ) from southeastern Australia. Molecular Ecology,<br>2019, 28, 3053-3072. | 2.0 | 32        |
| 43 | Identifying â€~firebreaks' to fragment dispersal networks of a marine parasite. International Journal for<br>Parasitology, 2019, 49, 277-286.                                                                                   | 1.3 | 28        |
| 44 | Influence of offshore oil and gas structures on seascape ecological connectivity. Global Change<br>Biology, 2022, 28, 3515-3536.                                                                                                | 4.2 | 28        |
| 45 | Genetic and Biophysical Models Help Define Marine Conservation Focus Areas. Frontiers in Marine<br>Science, 2018, 5, .                                                                                                          | 1.2 | 27        |
| 46 | Increased connectivity and depth improve the effectiveness of marine reserves. Global Change Biology, 2021, 27, 3432-3447.                                                                                                      | 4.2 | 27        |
| 47 | Uncertainty in spatially explicit population models. Biological Conservation, 2008, 141, 956-970.                                                                                                                               | 1.9 | 26        |
| 48 | Reserve Sizes Needed to Protect Coral Reef Fishes. Conservation Letters, 2018, 11, e12415.                                                                                                                                      | 2.8 | 24        |
| 49 | Building a marine cadastral information system for the United States— a case study. Computers,<br>Environment and Urban Systems, 2001, 25, 493-507.                                                                             | 3.3 | 23        |
| 50 | Dispersal and population connectivity are phenotype dependent in a marine metapopulation.<br>Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191104.                                                      | 1.2 | 23        |
| 51 | Assessing the current state of ecological connectivity in a large marine protected area system.<br>Conservation Biology, 2021, 35, 699-710.                                                                                     | 2.4 | 22        |
| 52 | Local connections and the larval competency strongly influence marine metapopulation persistence.<br>Ecological Applications, 2021, 31, e02302.                                                                                 | 1.8 | 21        |
| 53 | Latitudeâ€wide genetic patterns reveal historical effects and contrasting patterns of turnover and nestedness at the range peripheries of a tropical marine fish. Ecography, 2015, 38, 1212-1224.                               | 2.1 | 20        |
| 54 | Modelling and mapping regionalâ€scale patterns of fishing impact and fish stocks to support coralâ€reef<br>management in Micronesia. Diversity and Distributions, 2018, 24, 1729-1743.                                          | 1.9 | 20        |

Eric A Treml

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Using species distribution models to assess the longâ€term impacts of changing oceanographic conditions on abalone density in south east Australia. Ecography, 2020, 43, 1052-1064.                                    | 2.1 | 20        |
| 56 | Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.                                                                                  | 1.9 | 19        |
| 57 | Detecting marine pests using environmental DNA and biophysical models. Science of the Total Environment, 2022, 816, 151666.                                                                                            | 3.9 | 19        |
| 58 | Historical divergences associated with intermittent land bridges overshadow isolation by larval<br>dispersal in coâ€distributed species of <i>Tridacna</i> giant clams. Journal of Biogeography, 2018, 45,<br>848-858. | 1.4 | 18        |
| 59 | Seascape Genomics: Contextualizing Adaptive and Neutral Genomic Variation in the Ocean Environment. Population Genomics, 2019, , 171-218.                                                                              | 0.2 | 18        |
| 60 | Strategies in scheduling marine protected area establishment in a network system. Ecological Applications, 2019, 29, e01820.                                                                                           | 1.8 | 18        |
| 61 | Ocean currents and the population genetic signature of fish migrations. Ecology, 2020, 101, e02967.                                                                                                                    | 1.5 | 14        |
| 62 | The regional structure of spawning phenology and the potential consequences for connectivity of coral assemblages across the Eastern Tropical Pacific. ICES Journal of Marine Science, 2017, 74, 613-624.              | 1.2 | 9         |
| 63 | CAUSES AND CONSEQUENCES OF LAND USE CHANGE IN THE NORTH CAROLINA PIEDMONT: THE SCOPE OF UNCERTAINTY. , 2006, , 239-257.                                                                                                |     | 3         |
| 64 | Testing the Influence of Seascape Connectivity on Marine-Based Species Distribution Models. Frontiers in Marine Science, 2021, 8, .                                                                                    | 1.2 | 3         |