Gerlind Sulzenbacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9500481/publications.pdf

Version: 2024-02-01

43 papers

3,981 citations

30 h-index 254184 43 g-index

44 all docs

44 docs citations

44 times ranked 5283 citing authors

#	Article	IF	CITATIONS
1	Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO Journal, 2005, 24, 3635-3646.	7.8	602
2	Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nature Chemical Biology, 2018, 14, 306-310.	8.0	269
3	Bacterial glycosidases for the production of universal red blood cells. Nature Biotechnology, 2007, 25, 454-464.	17.5	259
4	Structure of theFusarium oxysporumEndoglucanase I with a Nonhydrolyzable Substrate Analogue:Â Substrate Distortion Gives Rise to the Preferred Axial Orientation for the Leaving Groupâ€,‡. Biochemistry, 1996, 35, 15280-15287.	2.5	248
5	Crystal Structure of the RNA Polymerase Domain of the West Nile Virus Non-structural Protein 5. Journal of Biological Chemistry, 2007, 282, 10678-10689.	3.4	222
6	The Three-dimensional Structure of Invertase (\hat{l}^2 -Fructosidase) from Thermotoga maritima Reveals a Bimodular Arrangement and an Evolutionary Relationship between Retaining and Inverting Glycosidases. Journal of Biological Chemistry, 2004, 279, 18903-18910.	3.4	189
7	Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease. Nature Communications, 2017, 8, 1111.	12.8	169
8	Structural determinants for interaction of partial agonists with acetylcholine binding protein and neuronal $\hat{l}\pm7$ nicotinic acetylcholine receptor. EMBO Journal, 2009, 28, 3040-3051.	7.8	153
9	Structural Analysis of the Synaptic Protein Neuroligin and Its β-Neurexin Complex: Determinants for Folding and Cell Adhesion. Neuron, 2007, 56, 979-991.	8.1	142
10	Crystal Structure of Thermotoga maritima α-l-Fucosidase. Journal of Biological Chemistry, 2004, 279, 13119-13128.	3.4	141
11	LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO Journal, 2006, 25, 1436-1444.	7.8	126
12	Substrate and Product Trafficking through the Active Center Gorge of Acetylcholinesterase Analyzed by Crystallography and Equilibrium Binding. Journal of Biological Chemistry, 2006, 281, 29256-29267.	3.4	117
13	Medium-Scale Structural Genomics:  Strategies for Protein Expression and Crystallization. Accounts of Chemical Research, 2003, 36, 165-172.	15.6	116
14	Catalysis and specificity in enzymatic glycoside hydrolysis: a 2,5B conformation for the glycosyl-enzyme intermediate revealed by the structure of the Bacillus agaradhaerens family 11 xylanase. Chemistry and Biology, 1999, 6, 483-492.	6.0	114
15	Crystal Structure of Streptococcus pneumoniae N-Acetylglucosamine-1-phosphate Uridyltransferase Bound to Acetyl-coenzyme A Reveals a Novel Active Site Architecture. Journal of Biological Chemistry, 2001, 276, 11844-11851.	3.4	92
16	Crystal Structure of E.coli Alcohol Dehydrogenase YqhD: Evidence of a Covalently Modified NADP Coenzyme. Journal of Molecular Biology, 2004, 342, 489-502.	4.2	92
17	Structure of the Endoglucanase I fromFusariumoxysporum: Native, Cellobiose, and 3,4-Epoxybutyl β-d-Cellobioside-Inhibited Forms, at 2.3 à Resolutionâ€,‡. Biochemistry, 1997, 36, 5902-5911.	2.5	90
18	Crystal structure of the family 7 endoglucanase I (Cel7B) from Humicola insolens at 2.2ÂÂ resolution and identification of the catalytic nucleophile by trapping of the covalent glycosyl-enzyme intermediate. Biochemical Journal, 1998, 335, 409-416.	3.7	77

#	Article	IF	CITATIONS
19	A medium-throughput crystallization approach. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 2109-2115.	2.5	73
20	Identification of the Catalytic Nucleophile of the Family 29 α-L-Fucosidase from Thermotoga maritima through Trapping of a Covalent Glycosyl-Enzyme Intermediate and Mutagenesis. Journal of Biological Chemistry, 2003, 278, 47394-47399.	3.4	70
21	\hat{l}^2 -Glycosyl Azides as Substrates for $\hat{l}\pm$ -Glycosynthases: Preparation of Efficient $\hat{l}\pm$ -L-Fucosynthases. Chemistry and Biology, 2009, 16, 1097-1108.	6.0	65
22	The Streptomyces lividans Family 12 Endoglucanase:  Construction of the Catalytic Core, Expression, and X-ray Structure at 1.75 à Resolution,. Biochemistry, 1997, 36, 16032-16039.	2.5	60
23	Glycosyltransferases, glycoside hydrolases: surprise, surprise!. Current Opinion in Structural Biology, 2008, 18, 527-533.	5.7	59
24	The Crystal Structure of a 2-Fluorocellotriosyl Complex of theStreptomyceslividansEndoglucanase CelB2 at 1.2 à Resolutionâ€,‡. Biochemistry, 1999, 38, 4826-4833.	2.5	56
25	Respective importance of protein folding and glycosylation in the thermal stability of recombinant feruloyl esterase A. FEBS Letters, 2006, 580, 5815-5821.	2.8	54
26	Identification of a GH110 Subfamily of $\hat{l}\pm 1,3$ -Galactosidases. Journal of Biological Chemistry, 2008, 283, 8545-8554.	3.4	52
27	Marine Macrocyclic Imines, Pinnatoxins A and G: Structural Determinants and Functional Properties to Distinguish Neuronal $\hat{l}\pm7$ from Muscle $\hat{l}\pm12\hat{l}^2\hat{l}^3\hat{l}$ nAChRs. Structure, 2015, 23, 1106-1115.	3.3	42
28	Crystal Structure of the GalNAc/Gal-Specific Agglutinin from the Phytopathogenic Ascomycete Sclerotinia sclerotiorum Reveals Novel Adaptation of a \hat{I}^2 -Trefoil Domain. Journal of Molecular Biology, 2010, 400, 715-723.	4.2	33
29	α-Galactosidase/Sucrose Kinase (AgaSK), a Novel Bifunctional Enzyme from the Human Microbiome Coupling Galactosidase and Kinase Activities. Journal of Biological Chemistry, 2011, 286, 40814-40823.	3.4	32
30	Functional characterization of a vacuolar invertase from Solanum lycopersicum: Post-translational regulation by N-glycosylation and aAproteinaceous inhibitor. Biochimie, 2014, 101, 39-49.	2.6	32
31	Structural versatility of peptides from Cα, α-disubstituted glycines: Crystal-state conformational analysis of homopeptides from Cα-methyl, Cα-benzylglycine [(αMe)Phe]n. Biopolymers, 1993, 33, 1617-1625.	2.4	25
32	Crystal structure of the conserved hypothetical protein Rv1155 fromMycobacterium tuberculosis. FEBS Letters, 2005, 579, 215-221.	2.8	25
33	Glycosylate and move! The glycosyltransferase Maf is involved in bacterial flagella formation. Environmental Microbiology, 2018, 20, 228-240.	3.8	20
34	Structure of Escherichia coli YhdH, a putative quinone oxidoreductase. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1855-1862.	2.5	15
35	The Quaternary Structure of a Glycoside Hydrolase Dictates Specificity toward β-Glucans. Journal of Biological Chemistry, 2016, 291, 7183-7194.	3.4	13
36	Structural basis for carbohydrate binding properties of a plant chitinase-like agglutinin with conserved catalytic machinery. Journal of Structural Biology, 2015, 190, 115-121.	2.8	10

#	Article	IF	CITATIONS
37	Crystal structure of E. coli yddE protein reveals a striking homology with diaminopimelate epimerase. Proteins: Structure, Function and Bioinformatics, 2004, 55, 764-767.	2.6	7
38	Snapshots of ADP-ribose bound to Getah virus macro domain reveal an intriguing choreography. Scientific Reports, 2020, 10, 14422.	3.3	7
39	Structural Comparison of Three Crystalline Complexes of a Peptidic Toxin With a Synaptic Acetylcholine Recognition Protein. Journal of Molecular Neuroscience, 2006, 30, 103-104.	2.3	3
40	A novel α-N-acetylgalactosaminidase family with an NAD+-dependent catalytic mechanism suitable for enzymatic removal of blood group A antigens. Biocatalysis and Biotransformation, 2010, 28, 22-32.	2.0	3
41	Exploitation of \hat{l}^2 -glycosyl azides for the preparation of \hat{l}_\pm -glycosynthases. Biocatalysis and Biotransformation, 2012, 30, 288-295.	2.0	3
42	Carnitine is a pharmacological allosteric chaperone of the human lysosomal \hat{l}_{\pm} -glucosidase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 2068-2079.	5.2	3
43	Medium-Scale Structural Genomics: Strategies for Protein Expression and Crystallization. ChemInform, 2003, 34, no.	0.0	1