Alessandro Bertucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9499839/publications.pdf

Version: 2024-02-01

623734 580821 26 846 14 25 citations g-index h-index papers 30 30 30 1512 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Breakable Hybrid Organosilica Nanocapsules for Protein Delivery. Angewandte Chemie - International Edition, 2016, 55, 3323-3327.	13.8	126
2	Combined Delivery of Temozolomide and Anti-miR221 PNA Using Mesoporous Silica Nanoparticles Induces Apoptosis in Resistant Glioma Cells. Small, 2015, 11, 5687-5695.	10.0	121
3	Detection of unamplified genomic DNA by a PNA-based microstructured optical fiber (MOF) Bragg-grating optofluidic system. Biosensors and Bioelectronics, 2015, 63, 248-254.	10.1	86
4	Porous Silicon Nanoparticle Delivery of Tandem Peptide Antiâ€Infectives for the Treatment of <i>Pseudomonas aeruginosa</i> Lung Infections. Advanced Materials, 2017, 29, 1701527.	21.0	82
5	Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating. Journal of Biomedical Optics, 2013, 18, 057004.	2.6	64
6	Tumor-Targeting, MicroRNA-Silencing Porous Silicon Nanoparticles for Ovarian Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23926-23937.	8.0	59
7	Intracellular Delivery of Peptide Nucleic Acid and Organic Molecules Using Zeolite‣ Nanocrystals. Advanced Healthcare Materials, 2014, 3, 1812-1817.	7.6	43
8	A Folding-Based Electrochemical Aptasensor for the Single-Step Detection of the SARS-CoV-2 Spike Protein. ACS Applied Materials & Interfaces, 2022, 14, 19204-19211.	8.0	42
9	Multifunctional Inorganic Nanocontainers for DNA and Drug Delivery into Living Cells. Chemistry - A European Journal, 2014, 20, 10900-10904.	3.3	41
10	Porous Silicon Nanoparticles Embedded in Poly(lacticâ€ <i>co</i> â€glycolic acid) Nanofiber Scaffolds Deliver Neurotrophic Payloads to Enhance Neuronal Growth. Advanced Functional Materials, 2020, 30, 2002560.	14.9	27
11	Antibody-Templated Assembly of an RNA Mimic of Green Fluorescent Protein. Analytical Chemistry, 2018, 90, 1049-1053.	6.5	25
12	Proteinâ€Controlled Actuation of Dynamic Nucleic Acid Networks by Using Synthetic DNA Translators**. Angewandte Chemie - International Edition, 2020, 59, 20577-20581.	13.8	18
13	Hybrid polymer/porous silicon nanofibers for loading and sustained release of synthetic DNA-based responsive devices. Nanoscale, 2020, 12, 2333-2339.	5. 6	17
14	Probing transcription factor binding activity and downstream gene silencing in living cells with a DNA nanoswitch. Nanoscale, 2018, 10, 2034-2044.	5.6	16
15	Programmable RNA-based systems for sensing and diagnostic applications. Analytical and Bioanalytical Chemistry, 2019, 411, 4293-4302.	3.7	14
16	Reactive Microcontact Printing of DNA Probes on (DMA-NAS-MAPS) Copolymer-Coated Substrates for Efficient Hybridization Platforms. Langmuir, 2016, 32, 3308-3313.	3.5	13
17	Programming DNAâ€Based Systems through Effective Molarity Enforced by Biomolecular Confinement. Chemistry - A European Journal, 2020, 26, 9826-9834.	3.3	11
18	Aptamer-based assays: strategies in the use of aptamers conjugated to magnetic micro- and nanobeads as recognition elements in food control. Analytical and Bioanalytical Chemistry, 2022, 414, 63-74.	3.7	9

#	Article	lF	CITATIONS
19	A Bifunctional Monomer for On-Resin Synthesis of Polyfunctional PNAs and Tailored Induced-Fit Switching Probes. Organic Letters, 2016, 18, 5452-5455.	4.6	8
20	Tuning the Loading and Release Properties of MicroRNA-Silencing Porous Silicon Nanoparticles by Using Chemically Diverse Peptide Nucleic Acid Payloads. ACS Biomaterials Science and Engineering, 2022, 8, 4123-4131.	5.2	7
21	Proteinâ€Controlled Actuation of Dynamic Nucleic Acid Networks by Using Synthetic DNA Translators**. Angewandte Chemie, 2020, 132, 20758-20762.	2.0	5
22	Controlling Dynamic DNA Reactions at the Surface of Single-Walled Carbon Nanotube Electrodes to Design Hybridization Platforms with a Specific Amperometric Readout. Analytical Chemistry, 2022, 94, 5075-5083.	6.5	5
23	Dissecting the intracellular signalling and fate of a DNA nanosensor by super-resolution and quantitative microscopy. Nanoscale, 2020, 12, 15402-15413.	5.6	4
24	Silicon Nanoparticles: Porous Silicon Nanoparticle Delivery of Tandem Peptide Antiâ€Infectives for the Treatment of <i>Pseudomonas aeruginosa</i> Lung Infections (Adv. Mater. 35/2017). Advanced Materials, 2017, 29, .	21.0	2
25	Loading of PNA and Other Molecular Payloads on Inorganic Nanostructures for Theranostics. Methods in Molecular Biology, 2018, 1811, 65-77.	0.9	1
26	Frontispiece: Programming DNAâ€Based Systems through Effective Molarity Enforced by Biomolecular Confinement. Chemistry - A European Journal, 2020, 26, .	3.3	0