Xuejun Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9499781/publications.pdf

Version: 2024-02-01

	933410	1281846
396	10	11
citations	h-index	g-index
13	13	637
docs citations	times ranked	citing authors
	citations 13	396 10 citations h-index 13 13

#	Article	IF	CITATIONS
1	Progress in studies of epidermal stem cells and their application in skin tissue engineering. Stem Cell Research and Therapy, 2020, 11, 303.	5. 5	30
2	Involvement of miRNA203 in the proliferation of epidermal stem cells during the process of DM chronic wound healing through Wnt signal pathways. Stem Cell Research and Therapy, 2020, 11, 348.	5.5	13
3	Porcine acellular dermal matrix accelerates wound healing through miR-124-3p.1 and miR-139-5p. Cytotherapy, 2020, 22, 494-502.	0.7	15
4	2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced aryl hydrocarbon receptor activation enhanced the suppressive function of mesenchymal stem cells against splenocyte proliferation. In Vitro Cellular and Developmental Biology - Animal, 2019, 55, 633-640.	1.5	4
5	Epidermal stem cells in wound healing and their clinical applications. Stem Cell Research and Therapy, 2019, 10, 229.	5.5	107
6	Eugenol inhibits nonâ€small cell lung cancer by repressing expression of NFâ€PBâ€regulated TRIM59. Phytotherapy Research, 2019, 33, 1562-1569.	5.8	20
7	Role of caveolin-1 in epidermal stem cells during burn wound healing in rats. Developmental Biology, 2019, 445, 271-279.	2.0	15
8	Curcumin promotes burn wound healing in mice by upregulating caveolinâ€1 in epidermal stem cells. Phytotherapy Research, 2019, 33, 422-430.	5.8	22
9	Basic fibroblast growth factor reduces scar by inhibiting the differentiation of epidermal stem cells to myofibroblasts via the Notch1/Jagged1 pathway. Stem Cell Research and Therapy, 2017, 8, 114.	5.5	35
10	Activation of Notch1 signaling alleviates dysfunction of bone marrow-derived mesenchymal stem cells induced by cigarette smoke extract. International Journal of COPD, 2017, Volume 12, 3133-3147.	2.3	17
11	Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately. Stem Cell Research and Therapy, 2015, 6, 120.	5. 5	118