Amir Mosavi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9499392/amir-mosavi-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 448
 8,397
 43
 69

 papers
 citations
 h-index
 g-index

 605
 12,619
 3.8
 7.43

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
448	Modeling the Price of Emergency Power Transmission Lines in the Reserve Market Due to the Influence of Renewable Energies. <i>Frontiers in Energy Research</i> , 2022 , 9,	3.8	3
447	A New Hybrid Cascaded Switched-Capacitor Reduced Switch Multilevel Inverter for Renewable Sources and Domestic Loads. <i>IEEE Access</i> , 2022 , 10, 14157-14183	3.5	3
446	Modeling of H2S solubility in ionic liquids using deep learning: A chemical structure-based approach. <i>Journal of Molecular Liquids</i> , 2022 , 351, 118418	6	O
445	A robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniques. <i>Energy Reports</i> , 2022 , 8, 2233-2247	4.6	4
444	Green Resources for Safety Improvement and Sustainable Landscape Design: The Case of a Dangerous Tehran-Dizin Road Bend. <i>Resources</i> , 2022 , 11, 19	3.7	1
443	SaaSRec+: a new context-aware recommendation method for SaaS services <i>Mathematical Biosciences and Engineering</i> , 2022 , 19, 1471-1495	2.1	
442	A comparison of the pulsating and steady jets on flow-induced vibrations and thermal behavior of a sprung cylinder inside an isothermal channel. <i>Case Studies in Thermal Engineering</i> , 2022 , 30, 101761	5.6	О
441	Feasibility of soft computing techniques for estimating the long-term mean monthly wind speed. <i>Energy Reports</i> , 2022 , 8, 638-648	4.6	6
440	Predicting formation damage of oil fields due to mineral scaling during water-flooding operations: Gradient boosting decision tree and cascade-forward back-propagation network. <i>Journal of Petroleum Science and Engineering</i> , 2022 , 208, 109315	4.4	7
439	Deep Learning Applications for COVID-19: A Brief Review. <i>Lecture Notes in Networks and Systems</i> , 2022 , 117-130	0.5	0
438	Single-Image Reflection Removal Using Deep Learning: A Systematic Review. <i>IEEE Access</i> , 2022 , 10, 299	93 <i>7.-</i> 29	953
437	Modeling Interfacial Tension of N2/CO2 Mixture + n-Alkanes with Machine Learning Methods: Application to EOR in Conventional and Unconventional Reservoirs by Flue Gas Injection. <i>Minerals (Basel, Switzerland)</i> , 2022 , 12, 252	2.4	О
436	Energetic thermo-physical analysis of MLP-RBF feed-forward neural network compared with RLS Fuzzy to predict CuO/liquid paraffin mixture properties. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2022 , 16, 764-779	4.5	O
435	Modeling solubility of CO-N gas mixtures in aqueous electrolyte systems using artificial intelligence techniques and equations of state <i>Scientific Reports</i> , 2022 , 12, 3625	4.9	0
434	Large electromagnetic field enhancement in plasmonic nanoellipse for tunable spaser based applications <i>PLoS ONE</i> , 2022 , 17, e0263630	3.7	
433	Statistical Methods for Modeling the Compressive Strength of Geopolymer Mortar <i>Materials</i> , 2022 , 15,	3.5	3
432	Developing Robust Flood Susceptibility Model with Small Numbers of Parameters in Highly Fertile Regions of Northwest Bangladesh for Sustainable Flood and Agriculture Management. <i>Sustainability</i> , 2022 , 14, 3982	3.6	3

431	The behavior of sustainable self-compacting concrete reinforced with low-density waste Polyethylene fiber. <i>Materials Research Express</i> , 2022 , 9, 035501	1.7	2	
430	A Multi-Agent Formalism Based on Contextual Defeasible Logic for Healthcare Systems <i>Frontiers in Public Health</i> , 2022 , 10, 849185	6	4	
429	Integration of neural network and fuzzy logic decision making compared with bilayered neural network in the simulation of daily dew point temperature. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2022 , 16, 713-723	4.5	1	
428	Oil Family Typing Using a Hybrid Model of Self-Organizing Maps and Artificial Neural Networks <i>ACS Omega</i> , 2022 , 7, 11578-11586	3.9		
427	The current and future potential geographical distribution of Nepeta crispa Willd., an endemic, rare and threatened aromatic plant of Iran: Implications for ecological conservation and restoration. <i>Ecological Indicators</i> , 2022 , 137, 108752	5.8	2	
426	An advanced computational intelligent framework to predict shear sonic velocity with application to mechanical rock classification <i>Scientific Reports</i> , 2022 , 12, 5579	4.9	O	
425	Efficacy of applying discontinuous boundary condition on the heat transfer and entropy generation through a slip microchannel equipped with nanofluid. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2022 , 16, 952-964	4.5	5	
424	Toward predicting SO2 solubility in ionic liquids utilizing soft computing approaches and equations of state. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2022 , 133, 104220	5.3	O	
423	A Wider Impedance Bandwidth Dual Filter Symmetrical MIMO Antenna for High-Speed Wideband Wireless Applications. <i>Symmetry</i> , 2022 , 14, 29	2.7	3	
422	Modeling the efficacy of different anti-angiogenic drugs on treatment of solid tumors using 3D computational modeling and machine learning <i>Computers in Biology and Medicine</i> , 2022 , 146, 105511	7	1	
421	Accurate discharge coefficient prediction of streamlined weirs by coupling linear regression and deep convolutional gated recurrent unit. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2022 , 16, 965-976	4.5	1	
420	Assessing the Impact of the Farakka Barrage on Hydrological Alteration in the Padma River with Future Insight. <i>Sustainability</i> , 2022 , 14, 5233	3.6	2	
419	Analysing Process and Probability of Built-Up Expansion Using Machine Learning and Fuzzy Logic in English Bazar, West Bengal. <i>Remote Sensing</i> , 2022 , 14, 2349	5	4	
418	Rainfall Prediction System Using Machine Learning Fusion for Smart Cities Sensors, 2022, 22,	3.8	4	
417	A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings. <i>Sustainability</i> , 2022 , 14, 5924	3.6	О	
416	Comparative Analysis of Machine Learning and Numerical Modeling for Combined Heat Transfer in Polymethylmethacrylate. <i>Polymers</i> , 2022 , 14, 1996	4.5	O	
415	Histopathologic Oral Cancer Prediction Using Oral Squamous Cell Carcinoma Biopsy Empowered with Transfer Learning. <i>Sensors</i> , 2022 , 22, 3833	3.8	1	
4 ¹ 4	Machine Learning Assisted Structure-based Models for Predicting Electrical Conductivity of Ionic Liquids. <i>Journal of Molecular Liquids</i> , 2022 , 119509	6	1	

413	Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations. <i>Sustainability</i> , 2022 , 14, 6183	3.6	6
412	A Recommendation System Based on AI for Storing Block Data in the Electronic Health Repository <i>Frontiers in Public Health</i> , 2021 , 9, 831404	6	1
411	GSVMA: A Genetic Support Vector Machine ANOVA Method for CAD Diagnosis <i>Frontiers in Cardiovascular Medicine</i> , 2021 , 8, 760178	5.4	1
410	Compressive Strength of Sustainable Geopolymer Concrete Composites: A State-of-the-Art Review. <i>Sustainability</i> , 2021 , 13, 13502	3.6	22
409	Forecasting the discharge capacity of inflatable rubber dams using hybrid machine learning models. Engineering Applications of Computational Fluid Mechanics, 2021 , 15, 1761-1774	4.5	O
408	Modeling of nitrogen solubility in unsaturated, cyclic, and aromatic hydrocarbons: Deep learning methods and SAFT equation of state. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2021 , 131, 104124-104124	5.3	3
407	Reliability assessment of compressive and splitting tensile strength prediction of roller compacted concrete pavement: introducing MARS-GOA-MCS. <i>International Journal of Pavement Engineering</i> , 2021 , 1-18	2.6	4
406	Solar radiation estimation in different climates with meteorological variables using Bayesian model averaging and new soft computing models. <i>Energy Reports</i> , 2021 , 7, 8973-8996	4.6	4
405	Application of robust machine learning methods to modeling hydrogen solubility in hydrocarbon fuels. <i>International Journal of Hydrogen Energy</i> , 2021 , 47, 320-320	6.7	3
404	Streamflow prediction with large climate indices using several hybrid multilayer perceptrons and copula Bayesian model averaging. <i>Ecological Indicators</i> , 2021 , 133, 108285	5.8	12
403	Effect of magnetic field on heat transfer from a channel: Nanofluid flow and porous layer arrangement. <i>Case Studies in Thermal Engineering</i> , 2021 , 28, 101675	5.6	3
402	A decomposition and multi-objective evolutionary optimization model for suspended sediment load prediction in rivers. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 1811-1829	4.5	2
401	Designing a committee of machines for modeling viscosity of water-based nanofluids. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 1967-1987	4.5	0
400	Intercept the Cloud Network From Brute Force and DDoS Attacks via Intrusion Detection and Prevention System. <i>IEEE Access</i> , 2021 , 9, 152300-152309	3.5	4
399	A Hybrid Deep Learning Technique for Personality Trait Classification From Text. <i>IEEE Access</i> , 2021 , 1-1	3.5	7
398	Optimized Type-2 Fuzzy Frequency Control for Multi-area Power Systems. <i>IEEE Access</i> , 2021 , 1-1	3.5	3
397	Recurrent Neural Network and Reinforcement Learning Model for COVID-19 Prediction. <i>Frontiers in Public Health</i> , 2021 , 9, 744100	6	13
396	Melting of non-Newtonian phase change material in a finned triple-tube: Efficacy of non-uniform magnetic field. <i>Case Studies in Thermal Engineering</i> , 2021 , 28, 101543	5.6	2

(2021-2021)

395	warm months of western Iran using different data mining algorithms and game theory. <i>Ecological Indicators</i> , 2021 , 132, 108287	5.8	7
394	Modeling hydrogen solubility in alcohols using machine learning models and equations of state. Journal of Molecular Liquids, 2021, 117807	6	1
393	Modeling of carbon dioxide solubility in ionic liquids based on group method of data handling. Engineering Applications of Computational Fluid Mechanics, 2021 , 15, 23-42	4.5	2
392	Numerical investigation of magnetic field on forced convection heat transfer and entropy generation in a microchannel with trapezoidal ribs. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 1746-1760	4.5	4
391	Reliability-based design and implementation of crow search algorithm for longitudinal dispersion coefficient estimation in rivers. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 35971-35990	5.1	6
390	Synthesizing Multi-Layer Perceptron Network with Ant Lion Biogeography-Based Dragonfly Algorithm Evolutionary Strategy Invasive Weed and League Champion Optimization Hybrid Algorithms in Predicting Heating Load in Residential Buildings. <i>Sustainability</i> , 2021 , 13, 3198	3.6	13
389	Assessing Machine Learning versus a Mathematical Model to Estimate the Transverse Shear Stress Distribution in a Rectangular Channel. <i>Mathematics</i> , 2021 , 9, 596	2.3	1
388	Bio-Inspired Hybridization of Artificial Neural Networks: An Application for Mapping the Spatial Distribution of Soil Texture Fractions. <i>Remote Sensing</i> , 2021 , 13, 1025	5	11
387	Performance Evaluation of Soft Computing for Modeling the Strength Properties of Waste Substitute Green Concrete. <i>Sustainability</i> , 2021 , 13, 2867	3.6	14
386	Suggesting a Stochastic Fractal Search Paradigm in Combination with Artificial Neural Network for Early Prediction of Cooling Load in Residential Buildings. <i>Energies</i> , 2021 , 14, 1649	3.1	13
385	A Statistical Approach to Model the H-Index Based on the Total Number of Citations and the Duration from the Publishing of the First Article. <i>Complexity</i> , 2021 , 2021, 1-8	1.6	О
384	Double-Target Based Neural Networks in Predicting Energy Consumption in Residential Buildings. <i>Energies</i> , 2021 , 14, 1331	3.1	8
383	Prediction of Compressive Strength of Rice Husk Ash Concrete through Different Machine Learning Processes. <i>Crystals</i> , 2021 , 11, 352	2.3	8
382	The One-Way FSI Method Based on RANS-FEM for the Open Water Test of a Marine Propeller at the Different Loading Conditions. <i>Journal of Marine Science and Engineering</i> , 2021 , 9, 351	2.4	2
381	Modeling Renewable Energy Systems by a Self-Evolving Nonlinear Consequent Part Recurrent Type-2 Fuzzy System for Power Prediction. <i>Sustainability</i> , 2021 , 13, 3301	3.6	11
380	Systematic Review of Life Cycle Assessment and Life Cycle Cost Analysis for Pavement and a Case Study. <i>Sustainability</i> , 2021 , 13, 4377	3.6	11
379	The Impact of Local Green Spaces of Historically and Culturally Valuable Residential Areas on Place Attachment. <i>Land</i> , 2021 , 10, 351	3.5	2
378	Deep Learning for Wave Energy Converter Modeling Using Long Short-Term Memory. <i>Mathematics</i> , 2021 , 9, 871	2.3	17

377	Mechanical and Fracture Parameters of Ultra-High Performance Fiber Reinforcement Concrete Cured via Steam and Water: Optimization of Binder Content. <i>Materials</i> , 2021 , 14,	3.5	6
376	Modeling Surface Water Quality Using the Adaptive Neuro-Fuzzy Inference System Aided by Input Optimization. <i>Sustainability</i> , 2021 , 13, 4576	3.6	11
375	Life Cycle Cost Analysis Comparison of Hot Mix Asphalt and Reclaimed Asphalt Pavement: A Case Study. <i>Sustainability</i> , 2021 , 13, 4411	3.6	10
374	Fuzzy clustering and distributed model for streamflow estimation in ungauged watersheds. <i>Scientific Reports</i> , 2021 , 11, 8243	4.9	7
373	A Novel Fractional-Order Multiple-Model Type-3 Fuzzy Control for Nonlinear Systems with Unmodeled Dynamics. <i>International Journal of Fuzzy Systems</i> , 2021 , 23, 1633	3.6	20
372	Art in Urban Spaces. Sustainability, 2021 , 13, 5597	3.6	1
371	Experimental Evaluation of Untreated and Pretreated Crumb Rubber Used in Concrete. <i>Crystals</i> , 2021 , 11, 558	2.3	5
370	The impact of the city skyline on pleasantness; state of the art and a case study. <i>Heliyon</i> , 2021 , 7, e0700	93.6	4
369	Effect of Recycled Coarse Aggregate and Bagasse Ash on Two-Stage Concrete. <i>Crystals</i> , 2021 , 11, 556	2.3	2
368	Evaluation efficiency of hybrid deep learning algorithms with neural network decision tree and boosting methods for predicting groundwater potential. <i>Geocarto International</i> , 2021 , 1-21	2.7	18
367	Prediction of Food Production Using Machine Learning Algorithms of Multilayer Perceptron and ANFIS. <i>Agriculture (Switzerland)</i> , 2021 , 11, 408	3	22
366	Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM. <i>Sustainability</i> , 2021 , 13, 5633	3.6	1
365	Analysis of the effect of roughness and concentration of Fe3O4/water nanofluid on the boiling heat transfer using the artificial neural network: An experimental and numerical study. <i>International Journal of Thermal Sciences</i> , 2021 , 163, 106863	4.1	15
364	Factor analysis approach to classify COVID-19 datasets in several regions. <i>Results in Physics</i> , 2021 , 25, 104071	3.7	10
363	Densely Connected Convolutional Networks (DenseNet) for Diagnosing Coronavirus Disease (COVID-19) from Chest X-ray Imaging 2021 ,		1
362	Finding the best station in Belgium to use residential-scale solar heating, One-year dynamic simulation with considering all system losses: Economic analysis of using ETSW. Sustainable Energy Technologies and Assessments, 2021 , 45, 101097	4.7	28
361	Deep learned recurrent type-3 fuzzy system: Application for renewable energy modeling/prediction. <i>Energy Reports</i> , 2021 , 7, 8115-8115	4.6	16
360	Introducing Copula as a Novel Statistical Method in Psychological Analysis. <i>International Journal of Environmental Research and Public Health</i> , 2021 , 18,	4.6	3

(2021-2021)

359	The Effect of Incorporating Industrials Wastewater on Durability and Long-Term Strength of Concrete. <i>Materials</i> , 2021 , 14,	3.5	1
358	Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models. <i>Geoderma</i> , 2021 , 383, 114793	6.7	22
357	Fuzzy clustering to classify several time series models with fractional Brownian motion errors. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 1137-1145	6.1	14
356	Atomic interactions between rock substrate and water-sand mixture with and without graphene nanosheets via molecular dynamics simulation. <i>Journal of Molecular Liquids</i> , 2021 , 323, 114610	6	3
355	Nonlinear model identification of dissimilar laser joining of S.S 304 and ABS using the Hammerstein Wiener method. <i>Optik</i> , 2021 , 225, 165649	2.5	5
354	Comparative study of multilayer perceptron-stochastic gradient descent and gradient boosted trees for predicting daily suspended sediment load: The case study of the Mississippi River, U.S <i>International Journal of Sediment Research</i> , 2021 , 36, 512-523	3	11
353	Predicting soil electrical conductivity using multi-layer perceptron integrated with grey wolf optimizer. <i>Journal of Geochemical Exploration</i> , 2021 , 220, 106639	3.8	6
352	Boiling of Argon flow in a microchannel by considering the spherical geometry for roughness barriers using molecular dynamics simulation. <i>Journal of Molecular Liquids</i> , 2021 , 321, 114462	6	3
351	The high-performance light transmitting concrete and experimental analysis of using polymethylmethacrylate optical fibers in it. <i>Journal of Building Engineering</i> , 2021 , 38, 102076	5.2	5
350	Ensemble Boosting and Bagging Based Machine Learning Models for Groundwater Potential Prediction. <i>Water Resources Management</i> , 2021 , 35, 23-37	3.7	49
349	Analysis of entropy generation of ferrofluid flow in the microchannel with twisted porous ribs: The two-phase investigation with various porous layers. <i>Powder Technology</i> , 2021 , 380, 349-357	5.2	6
348	Susceptibility mapping of groundwater salinity using machine learning models. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 10804-10817	5.1	21
347	Toward mechanistic understanding of wettability alteration in calcite and dolomite rocks: The effects of resin, asphaltene, anionic surfactant, and hydrophilic nano particles. <i>Journal of Molecular Liquids</i> , 2021 , 321, 114672	6	12
346	Prediction of Discharge Capacity of Labyrinth Weir with Gene Expression Programming. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 202-217	0.4	2
345	Effects of low-level hydroxy as a gaseous additive on performance and emission characteristics of a dual fuel diesel engine fueled by diesel/biodiesel blends. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 236-250	4.5	3
344	Hybrid model of support vector regression and fruitfly optimization algorithm for predicting ski-jump spillway scour geometry. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 272-291	4.5	5
343	The Implementation of Border Gateway Protocol Using Software-Defined Networks: A Systematic Literature Review. <i>IEEE Access</i> , 2021 , 9, 112596-112606	3.5	1
342	Evaluating the potential of offshore wind energy in the Gulf of Oman using the MENA-CORDEX wind speed data simulations. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 613-61	2 16 ⁵	5

341	Fuzzy Logic Model to Assess Desertification Intensity Based on Vulnerability Indices. <i>Acta Polytechnica Hungarica</i> , 2021 , 18, 7-24	2.2	2
340	Role of gradients and vortexes on suitable location of discrete heat sources on a sinusoidal-wall microchannel. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 1176-1190	4.5	6
339	SmartBlock-SDN: An Optimized Blockchain-SDN Framework for Resource Management in IoT. <i>IEEE Access</i> , 2021 , 9, 28361-28376	3.5	21
338	Design of Adaptive-Robust Controller for Multi-State Synchronization of Chaotic Systems with Unknown and Time-Varying Delays and Its Application in Secure Communication. <i>Sensors</i> , 2021 , 21,	3.8	7
337	Introducing an evolutionary-decomposition model for prediction of municipal solid waste flow: application of intrinsic time-scale decomposition algorithm. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 1159-1175	4.5	1
336	Different scenarios of glycerin conversion to combustible products and their effects on compression ignition engine as fuel additive: a review. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 1191-1228	4.5	1
335	A New Online Learned Interval Type-3 Fuzzy Control System for Solar Energy Management Systems. <i>IEEE Access</i> , 2021 , 9, 10498-10508	3.5	27
334	Driving factors behind the social role of retail centers on recreational activities. <i>Cogent Business and Management</i> , 2021 , 8, 1905218	1.6	
333	Studying the CH Crystals and Mechanical Properties of Sustainable Concrete Containing Recycled Coarse Aggregate with Used Nano-Silica. <i>Crystals</i> , 2021 , 11, 122	2.3	10
332	Detection and prediction of lake degradation using landscape metrics and remote sensing dataset. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 27283-27298	5.1	5
331	Using soft computing and machine learning algorithms to predict the discharge coefficient of curved labyrinth overflows. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 1002-	10 ⁴ 1·§	2
330	A New Active Fault Tolerant Control System: Predictive Online Fault Estimation. <i>IEEE Access</i> , 2021 , 9, 118461-118471	3.5	O
329	Diffusion analysis with high and low concentration regions by the finite difference method, the adaptive network-based fuzzy inference system, and the bilayered neural network method. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 1392-1399	4.5	
328	A Step towards Sustainable Self-Compacting Concrete by Using Partial Substitution of Wheat Straw Ash and Bentonite Clay Instead of Cement. <i>Sustainability</i> , 2021 , 13, 824	3.6	17
327	A water cycle-based error minimization technique in predicting the bearing capacity of shallow foundation. <i>Engineering With Computers</i> , 2021 , 1	4.5	5
326	Application of Gene Expression Programming (GEP) for the Prediction of Compressive Strength of Geopolymer Concrete. <i>Materials</i> , 2021 , 14,	3.5	26
325	Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation. <i>Hydrology and Earth System Sciences</i> , 2021 , 25, 603-618	5.5	16
324	Principal component analysis to study the relations between the spread rates of COVID-19 in high risks countries. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 457-464	6.1	41

(2021-2021)

323	The Effect of Marketing Investment on Firm Value and Systematic Risk. <i>Journal of Open Innovation: Technology, Market, and Complexity</i> , 2021 , 7, 64	3.7	1	
322	An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework. <i>Energies</i> , 2021 , 14, 1196	3.1	16	
321	Testing the equality of several independent stationary and non-stationary time series models with fractional Brownian motion errors. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 1767-1775	6.1	1	
320	Electrical Power Prediction through a Combination of Multilayer Perceptron with Water Cycle Ant Lion and Satin Bowerbird Searching Optimizers. <i>Sustainability</i> , 2021 , 13, 2336	3.6	15	
319	Modeling surface tension of ionic liquids by chemical structure-intelligence based models. <i>Journal of Molecular Liquids</i> , 2021 , 342, 116961	6	7	
318	Improving daily stochastic streamflow prediction: comparison of novel hybrid data-mining algorithms. <i>Hydrological Sciences Journal</i> , 2021 , 66, 1457-1474	3.5	7	
317	Uncertainty Assessment of Entropy-Based Circular Channel Shear Stress Prediction Models Using a Novel Method. <i>Geosciences (Switzerland)</i> , 2021 , 11, 308	2.7	О	
316	Preparation Methods for Graphene Metal and Polymer Based Composites for EMI Shielding Materials: State of the Art Review of the Conventional and Machine Learning Methods. <i>Metals</i> , 2021 , 11, 1164	2.3	4	
315	Estimation of stress-strength reliability R=P(X>Y) based on Weibull record data in the presence of inter-record times. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 61, 2130-2130	6.1	0	
314	Predicting the Parameters of Vortex Bladeless Wind Turbine Using Deep Learning Method of Long Short-Term Memory. <i>Energies</i> , 2021 , 14, 4867	3.1	7	
313	Application of Analytical Hierarchy Process for Structural Health Monitoring and Prioritizing Concrete Bridges in Iran. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 8060	2.6	4	
312	Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods. <i>Results in Physics</i> , 2021 , 27, 104495	3.7	18	
311	Application of Taguchi method and response surface methodology into the removal of malachite green and auramine-O by NaX nanozeolites. <i>Scientific Reports</i> , 2021 , 11, 16054	4.9	12	
310	Survey of Mechanical Properties of Geopolymer Concrete: A Comprehensive Review and Data Analysis. <i>Materials</i> , 2021 , 14,	3.5	13	
309	Experimental study and modelling of asphaltene deposition on metal surfaces with superhydrophobic and low sliding angle inner coatings. <i>Scientific Reports</i> , 2021 , 11, 16812	4.9	2	
308	A machine learning approach for active/reactive power control of grid-connected doubly-fed induction generators. <i>Ain Shams Engineering Journal</i> , 2021 , 13, 101564-101564	4.4	2	
307	Graphene and Iron Reinforced Polymer Composite Electromagnetic Shielding Applications: A Review. <i>Polymers</i> , 2021 , 13,	4.5	12	
306	Predicting the Degree of Dissolved Oxygen Using Three Types of Multi-Layer Perceptron-Based Artificial Neural Networks. <i>Sustainability</i> , 2021 , 13, 9898	3.6	17	

305	Modeling hydrogen solubility in hydrocarbons using extreme gradient boosting and equations of state. <i>Scientific Reports</i> , 2021 , 11, 17911	4.9	18
304	Medical Image Interpolation Using Recurrent Type-2 Fuzzy Neural Network. <i>Frontiers in Neuroinformatics</i> , 2021 , 15, 667375	3.9	8
303	Crack propagation modeling of strengthening reinforced concrete deep beams with CFRP plates. <i>Materials Research Express</i> , 2021 , 8, 095502	1.7	
302	A novel approach to compare the spectral densities of some uncorrelated cyclostationary time series. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 61, 4995-4995	6.1	
301	Modeling the Producibility of 3D Printing in Polylactic Acid Using Artificial Neural Networks and Fused Filament Fabrication. <i>Polymers</i> , 2021 , 13,	4.5	10
300	Application of cascade forward neural network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 205, 108836	4.4	19
299	Evaluating urban flood risk using hybrid method of TOPSIS and machine learning. <i>International Journal of Disaster Risk Reduction</i> , 2021 , 66, 102614	4.5	11
298	Fabrication and characterization of Cesium-doped Tungstate nanorods for Near-Infrared light absorption in dye sensitized solar cells. <i>Results in Physics</i> , 2021 , 29, 104804	3.7	4
297	Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. <i>Journal of Environmental Management</i> , 2021 , 298, 113551	7.9	19
296	Effects of triethylene glycol mono methyl ether (TGME) as a novel oxygenated additive on emission and performance of a dual-fuel diesel engine fueled with natural gas-diesel/biodiesel. <i>Energy Reports</i> , 2021 , 7, 1172-1189	4.6	8
295	Applying different resampling strategies in machine learning models to predict head-cut gully erosion susceptibility. <i>AEJ - Alexandria Engineering Journal</i> , 2021 , 60, 5813-5829	6.1	10
294	Numerical simulation of NEPCM series two-layer solidification process in a triple tube with porous fin. <i>Case Studies in Thermal Engineering</i> , 2021 , 28, 101407	5.6	3
293	DDSLA-RPL: Dynamic Decision System Based on Learning Automata in the RPL Protocol for Achieving QoS. <i>IEEE Access</i> , 2021 , 9, 63131-63148	3.5	0
292	An integrated machine learning, noise suppression, and population-based algorithm to improve total dissolved solids prediction. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 251-271	4.5	4
291	Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 1147-1158	4.5	11
290	Optimization of performance and emission of compression ignition engine fueled with propylene glycol and biodieseldiesel blends using artificial intelligence method of ANN-GA-RSM. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2021 , 15, 413-425	4.5	5
289	Modeling of nitrogen solubility in normal alkanes using machine learning methods compared with cubic and PC-SAFT equations of state <i>Scientific Reports</i> , 2021 , 11, 24403	4.9	1
288	Modeling of CO adsorption capacity by porous metal organic frameworks using advanced decision tree-based models <i>Scientific Reports</i> , 2021 , 11, 24468	4.9	4

(2020-2020)

287	Artificial Intelligence for Modeling Real Estate Price Using Call Detail Records and Hybrid Machine Learning Approach. <i>Entropy</i> , 2020 , 22,	2.8	7
286	Agricultural Risk Management Using Fuzzy TOPSIS Analytical Hierarchy Process (AHP) and Failure Mode and Effects Analysis (FMEA). <i>Agriculture (Switzerland)</i> , 2020 , 10, 504	3	12
285	Adaptive Neuro-Fuzzy Inference System and a Multilayer Perceptron Model Trained with Grey Wolf Optimizer for Predicting Solar Diffuse Fraction. <i>Entropy</i> , 2020 , 22,	2.8	6
284	Flash Flood Susceptibility Modeling Using New Approaches of Hybrid and Ensemble Tree-Based Machine Learning Algorithms. <i>Remote Sensing</i> , 2020 , 12, 3568	5	42
283	Assessing the Influence of Soil Quality on Rainfed Wheat Yield. <i>Agriculture (Switzerland)</i> , 2020 , 10, 469	3	5
282	Combination of Group Method of Data Handling (GMDH) and Computational Fluid Dynamics (CFD) for Prediction of Velocity in Channel Intake. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 7521	2.6	5
281	A Novel Comprehensive Evaluation Method for Estimating the Bank Profile Shape and Dimensions of Stable Channels Using the Maximum Entropy Principle. <i>Entropy</i> , 2020 , 22,	2.8	3
280	River Water Salinity Prediction Using Hybrid Machine Learning Models. <i>Water (Switzerland)</i> , 2020 , 12, 2951	3	23
279	Application of intelligent models in reservoir and production engineering 2020 , 79-227		
278	Comparative Analysis of Artificial Intelligence Models for Accurate Estimation of Groundwater Nitrate Concentration. <i>Sensors</i> , 2020 , 20,	3.8	18
277	Sustainable Banking; Evaluation of the European Business Models. Sustainability, 2020, 12, 2314	3.6	22
276	Artificial Intelligence Based Methods for Asphaltenes Adsorption by Nanocomposites: Application of Group Method of Data Handling, Least Squares Support Vector Machine, and Artificial Neural Networks. <i>Nanomaterials</i> , 2020 , 10,	5.4	20
275	Wind speed prediction using a hybrid model of the multi-layer perceptron and whale optimization algorithm. <i>Energy Reports</i> , 2020 , 6, 1147-1159	4.6	56
274	Modeling and Uncertainty Analysis of Groundwater Level Using Six Evolutionary Optimization Algorithms Hybridized with ANFIS, SVM, and ANN. <i>Sustainability</i> , 2020 , 12, 4023	3.6	44
273	Survey of Sustainable Regeneration of Historic and Cultural Cores of Cities. <i>Energies</i> , 2020 , 13, 2708	3.1	9
272	Classification-Based Regression Models for Prediction of the Mechanical Properties of Roller-Compacted Concrete Pavement. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 3707	2.6	14
271	COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach. <i>Mathematics</i> , 2020 , 8, 890	2.3	112
270	Modeling Film Conductivity for Ion Migration Analysis in Perovskite Solar Cells. <i>Journal of Electronic Materials</i> , 2020 , 49, 7018-7023	1.9	1

269	Machine Learning Modeling of Aerobic Biodegradation for Azo Dyes and Hexavalent Chromium. <i>Mathematics</i> , 2020 , 8, 913	2.3	5	
268	Modeling Nearly Zero Energy Buildings for Sustainable Development in Rural Areas. <i>Energies</i> , 2020 , 13, 2593	3.1	13	
267	Evaluation of electrical efficiency of photovoltaic thermal solar collector. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2020 , 14, 545-565	4.5	42	
266	Rigorous Connectionist Models to Predict Carbon Dioxide Solubility in Various Ionic Liquids. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 304	2.6	15	
265	A New K-Nearest Neighbors Classifier for Big Data Based on Efficient Data Pruning. <i>Mathematics</i> , 2020 , 8, 286	2.3	25	
264	Modeling the efficiency and emissions of a hybrid solar-gas power plant. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2020 , 14, 790-804	4.5	3	
263	Particle swarm optimization model to predict scour depth around a bridge pier. <i>Frontiers of Structural and Civil Engineering</i> , 2020 , 14, 855-866	2.5	11	
262	Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources. <i>Information Fusion</i> , 2020 , 63, 256-272	16.7	37	
261	Prediction of significant wave height; comparison between nested grid numerical model, and machine learning models of artificial neural networks, extreme learning and support vector machines. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2020 , 14, 805-817	4.5	26	
260	Food Supply Chain and Business Model Innovation. <i>Foods</i> , 2020 , 9,	4.9	13	
259	Comparison of LSSVM model results with artificial neural network model for determination of the solubility of SO2 in ionic liquids. <i>Journal of Molecular Liquids</i> , 2020 , 304, 112771	6	23	
258	Experimental estimation of temporal and spatial resolution of coefficient of heat transfer in a channel using inverse heat transfer method. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2020 , 14, 271-283	4.5	2	
257	Prediction of flow characteristics in the bubble column reactor by the artificial pheromone-based communication of biological ants. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2020 , 14, 367-378	4.5	15	
256	Modeling climate change impact on wind power resources using adaptive neuro-fuzzy inference system. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2020 , 14, 491-506	4.5	16	
255	FCS-MBFLEACH: Designing an Energy-Aware Fault Detection System for Mobile Wireless Sensor Networks. <i>Mathematics</i> , 2020 , 8, 28	2.3	11	
254	Extreme Learning Machine-Based Model for Solubility Estimation of Hydrocarbon Gases in Electrolyte Solutions. <i>Processes</i> , 2020 , 8, 92	2.9	14	
253	Modeling CO2 Solubility in Water at High Pressure and Temperature Conditions. <i>Energy & Energy & Energ</i>	4.1	31	

251	Quantitative Estimation of the Nutrient Uptake Requirements of Peanut. Agronomy, 2020, 10, 119	3.6	7
250	An Enhanced Distributed Congestion Control Method for Classical 6LowPAN Protocols Using Fuzzy Decision System. <i>IEEE Access</i> , 2020 , 8, 20628-20645	3.5	9
249	A Combined Method of Image Processing and Artificial Neural Network for the Identification of 13 Iranian Rice Cultivars. <i>Agronomy</i> , 2020 , 10, 117	3.6	15
248	Coronary Artery Disease Diagnosis; Ranking the Significant Features Using a Random Trees Model. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	43
247	Predicting Standardized Streamflow index for hydrological drought using machine learning models. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2020 , 14, 339-350	4.5	88
246	Spatial Analysis of Seasonal Precipitation over Iran: Co-Variation with Climate Indices. <i>ISPRS International Journal of Geo-Information</i> , 2020 , 9, 73	2.9	18
245	Electrical characterization of CIGS thin-film solar cells by two- and four-wire probe technique. <i>Modern Physics Letters B</i> , 2020 , 34, 2050102	1.6	O
244	Performance evaluation of binders and Stone Matrix Asphalt (SMA) mixtures modified by Ground Tire Rubber (GTR), waste Polyethylene Terephthalate (PET) and Anti Stripping Agents (ASAs). <i>Construction and Building Materials</i> , 2020 , 251, 118932	6.7	19
243	Cooling Performance of a Novel Circulatory Flow Concentric Multi-Channel Heat Sink with Nanofluids. <i>Nanomaterials</i> , 2020 , 10,	5.4	10
242	Modeling and Sensitivity Analysis of Coronavirus Disease (COVID-19) Outbreak Prediction 2020 ,		1
241	Coronavirus (COVID-19) Outbreak Prediction Using Epidemiological Models of Richards Gompertz Logistic Ratkowsky and SIRD 2020 ,		2
240	COVID-19 (Coronavirus Disease) Outbreak Prediction Using a Susceptible-Exposed-Symptomatic Infected-Recovered-Super Spreaders-Asymptomatic Infected-Deceased-Critical (SEIR-PADC) Dynamic Model 2020 ,		4
239	Rapid COVID-19 Diagnosis Using Deep Learning of the Computerized Tomography Scans 2020 ,		5
238	Optimal Type-3 Fuzzy System for Solving Singular Multi-Pantograph Equations. <i>IEEE Access</i> , 2020 , 8, 23	25692-7	225702
237	Urban heat resilience at the time of global warming: evaluating the impact of the urban parks on outdoor thermal comfort. <i>Environmental Sciences Europe</i> , 2020 , 32,	5	19
236	Modelling Temperature Variation of Mushroom Growing Hall Using Artificial Neural Networks. <i>Lecture Notes in Networks and Systems</i> , 2020 , 33-45	0.5	9
235	Shear stress distribution prediction in symmetric compound channels using data mining and machine learning models. <i>Frontiers of Structural and Civil Engineering</i> , 2020 , 14, 1097-1109	2.5	5
234	Deep Learning for Stock Market Prediction 2020 ,		5

233	Smart Structural Health Monitoring of Flexible Pavements Using Machine Learning Methods 2020 ,		2
232	A Mobile Cloud-based eHealth Scheme. <i>Computers, Materials and Continua</i> , 2020 , 62, 31-39	3.9	2
231	Performance Evaluation Of Supervised Machine Learning Techniques For Efficient Detection Of Emotions From Online Content. <i>Computers, Materials and Continua</i> , 2020 , 63, 1093-1118	3.9	7
230	Applying ANN, ANFIS, and LSSVM Models for Estimation of Acid Solvent Solubility in Supercritical CO2. <i>Computers, Materials and Continua</i> , 2020 , 63, 1175-1204	3.9	8
229	Modeling Pan Evaporation Using Gaussian Process Regression K-Nearest Neighbors Random Forest and Support Vector Machines; Comparative Analysis. <i>Atmosphere</i> , 2020 , 11, 66	2.7	48
228	Energy-Efficient Method for Wireless Sensor Networks Low-Power Radio Operation in Internet of Things. <i>Electronics (Switzerland)</i> , 2020 , 9, 320	2.6	15
227	Viscosity of Ionic Liquids: Application of the Eyring's Theory and a Committee Machine Intelligent System. <i>Molecules</i> , 2020 , 26,	4.8	7
226	Insights into the Effects of Pore Size Distribution on the Flowing Behavior of Carbonate Rocks: Linking a Nano-Based Enhanced Oil Recovery Method to Rock Typing. <i>Nanomaterials</i> , 2020 , 10,	5.4	20
225	Urban Train Soil-Structure Interaction Modeling and Analysis. <i>Lecture Notes in Networks and Systems</i> , 2020 , 361-381	0.5	
224	Building Energy Information: Demand and Consumption Prediction with Machine Learning Models for Sustainable and Smart Cities. <i>Lecture Notes in Networks and Systems</i> , 2020 , 191-201	0.5	17
223	Systematic Review of Deep Learning and Machine Learning Models in Biofuels Research. <i>Lecture Notes in Networks and Systems</i> , 2020 , 19-32	0.5	26
222	List of Deep Learning Models. <i>Lecture Notes in Networks and Systems</i> , 2020 , 202-214	0.5	20
221	Advances in Machine Learning Modeling Reviewing Hybrid and Ensemble Methods. <i>Lecture Notes in Networks and Systems</i> , 2020 , 215-227	0.5	21
220	State of the Art Survey of Deep Learning and Machine Learning Models for Smart Cities and Urban Sustainability. <i>Lecture Notes in Networks and Systems</i> , 2020 , 228-238	0.5	15
219	Prediction of Combine Harvester Performance Using Hybrid Machine Learning Modeling and Response Surface Methodology. <i>Lecture Notes in Networks and Systems</i> , 2020 , 345-360	0.5	7
218	Deep Learning and Machine Learning in Hydrological Processes Climate Change and Earth Systems a Systematic Review. <i>Lecture Notes in Networks and Systems</i> , 2020 , 52-62	0.5	30
217	Modeling natural gas compressibility factor using a hybrid group method of data handling. Engineering Applications of Computational Fluid Mechanics, 2020 , 14, 27-37	4.5	14
216	Short-Term Hydrological Drought Forecasting Based on Different Nature-Inspired Optimization Algorithms Hybridized With Artificial Neural Networks. <i>IEEE Access</i> , 2020 , 8, 15210-15222	3.5	22

(2020-2020)

215	Computational modeling of land surface temperature using remote sensing data to investigate the spatial arrangement of buildings and energy consumption relationship. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2020 , 14, 254-270	4.5	21
214	Modeling the temperature distribution during laser hardening process. <i>Results in Physics</i> , 2020 , 16, 102	8 §.3	7
213	Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. <i>Science of the Total Environment</i> , 2020 , 705, 135983	10.2	79
212	Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method. <i>Science of the Total Environment</i> , 2020 , 711, 135161	10.2	110
211	Groundwater Quality Assessment for Sustainable Drinking and Irrigation. Sustainability, 2020 , 12, 177	3.6	45
210	Machine Learning for Modeling the Singular Multi-Pantograph Equations. <i>Entropy</i> , 2020 , 22,	2.8	5
209	Fractional-Order Fuzzy Control Approach for Photovoltaic/Battery Systems under Unknown Dynamics, Variable Irradiation and Temperature. <i>Electronics (Switzerland)</i> , 2020 , 9, 1455	2.6	20
208	Evaluating the Efficiency of Different Regression, Decision Tree, and Bayesian Machine Learning Algorithms in Spatial Piping Erosion Susceptibility Using ALOS/PALSAR Data. <i>Land</i> , 2020 , 9, 346	3.5	4
207	Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics. <i>Mathematics</i> , 2020 , 8, 1640	2.3	26
206	Susceptibility Prediction of Groundwater Hardness Using Ensemble Machine Learning Models. <i>Water (Switzerland)</i> , 2020 , 12, 2770	3	28
205	Calculating Filament Feed in the Fused Deposition Modeling Process to Correctly Print Continuous Fiber Composites in Curved Paths. <i>Materials</i> , 2020 , 13,	3.5	7
204	Ensemble models of GLM, FDA, MARS, and RF for flood and erosion susceptibility mapping: a priority assessment of sub-basins. <i>Geocarto International</i> , 2020 , 1-20	2.7	39
203	Urban views and their impacts on citizens: A grounded theory study of Sanandaj city. <i>Heliyon</i> , 2020 , 6, e05157	3.6	3
202	Early Detection of the Advanced Persistent Threat Attack Using Performance Analysis of Deep Learning. <i>IEEE Access</i> , 2020 , 8, 186125-186137	3.5	12
201	Investigating the effect of process parameters on the mechanical properties and temperature distribution in fiber laser welding of AISI304 and AISI 420 sheet using response surface methodology. <i>Infrared Physics and Technology</i> , 2020 , 111, 103478	2.7	5
200	The molecular dynamics simulation of thermal manner of Ar/Cu nanofluid flow: The effects of spherical barriers size. <i>Journal of Molecular Liquids</i> , 2020 , 319, 114183	6	21
199	Hybrid Machine Learning Model of Extreme Learning Machine Radial basis function for Breast Cancer Detection and Diagnosis; a Multilayer Fuzzy Expert System 2020 ,		6
198	Comparative Analysis of Single and Hybrid Neuro-Fuzzy-Based Models for an Industrial Heating Ventilation and Air Conditioning Control System 2020 ,		1

197	Predicting and Mapping of Soil Organic Carbon Using Machine Learning Algorithms in Northern Iran. <i>Remote Sensing</i> , 2020 , 12, 2234	5	42
196	Insight into the antiviral activity of synthesized schizonepetin derivatives: A theoretical investigation. <i>Scientific Reports</i> , 2020 , 10, 8599	4.9	2
195	Estimating CO2-Brine diffusivity using hybrid models of ANFIS and evolutionary algorithms. Engineering Applications of Computational Fluid Mechanics, 2020 , 14, 818-834	4.5	6
194	Machine Learning for Prediction of Energy in Wheat Production. <i>Agriculture (Switzerland)</i> , 2020 , 10, 517	3	11
193	Social Capital Contributions to Food Security: A Comprehensive Literature Review. Foods, 2020, 9,	4.9	16
192	Smart Structural Health Monitoring of Flexible Pavements Using Machine Learning Methods. <i>Coatings</i> , 2020 , 10, 1100	2.9	7
191	Synthesis of new dihybrid nanofluid of TiO2/MWCNT in water the glycol to improve mixture thermal performance: preparation, characterization, and a novel correlation via ANN based on orthogonal distance regression algorithm. <i>Journal of Thermal Analysis and Calorimetry</i> , 2020 , 144, 2587	4.1	16
190	Develop lattice Boltzmann method and its related boundary conditions models for the benchmark oscillating walls by modifying hydrodynamic and thermal distribution functions. <i>European Physical Journal Plus</i> , 2020 , 135, 1	3.1	8
189	A comparative analysis on diagnosis of diabetes mellitus using different approaches [A survey. <i>Informatics in Medicine Unlocked</i> , 2020 , 21, 100482	5.3	9
188	Monthly streamflow prediction using a hybrid stochastic-deterministic approach for parsimonious non-linear time series modeling. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2020 , 14, 1351-1372	4.5	7
187	Training Multilayer Perceptron with Genetic Algorithms and Particle Swarm Optimization for Modeling Stock Price Index Prediction. <i>Entropy</i> , 2020 , 22,	2.8	18
186	Towards an Ensemble Machine Learning Model of Random Subspace Based Functional Tree Classifier for Snow Avalanche Susceptibility Mapping. <i>IEEE Access</i> , 2020 , 8, 145968-145983	3.5	21
185	Groundwater Salinity Susceptibility Mapping Using Classifier Ensemble and Bayesian Machine Learning Models. <i>IEEE Access</i> , 2020 , 8, 145564-145576	3.5	20
184	Experimental study and modeling of asphaltene deposition on metal surfaces via electrodeposition process: The role of ultrasonic radiation, asphaltene concentration and structure. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 195, 107734	4.4	7
183	Integrating functionalized magnetite nanoparticles with low salinity water and surfactant solution: Interfacial tension study. <i>Fuel</i> , 2020 , 281, 118641	7.1	14
182	Susceptibility Mapping of Soil Water Erosion Using Machine Learning Models. <i>Water (Switzerland)</i> , 2020 , 12, 1995	3	34
181	Flood Frequency Analysis of Interconnected Rivers by Copulas. <i>Water Resources Management</i> , 2020 , 34, 3533-3549	3.7	7
180	Generation Expansion Planning in the Presence of Wind Power Plants Using a Genetic Algorithm Model. <i>Electronics (Switzerland)</i> , 2020 , 9, 1143	2.6	9

(2020-2020)

179	DistBlockBuilding: A Distributed Blockchain-Based SDN-IoT Network for Smart Building Management. <i>IEEE Access</i> , 2020 , 8, 140008-140018	3.5	25
178	Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and multilayer perceptron for predicting soil temperature at different depths. Engineering Applications of Computational Fluid Mechanics, 2020, 14, 939-953	4.5	15
177	Deep Learning for Stock Market Prediction. <i>Entropy</i> , 2020 , 22,	2.8	73
176	Comparative Analysis of ANN-ICA and ANN-GWO for Crop Yield Prediction 2020,		7
175	Performance Analysis of Combine Harvester using Hybrid Model of Artificial Neural Networks Particle Swarm Optimization 2020 ,		2
174	Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods. <i>Mathematics</i> , 2020 , 8, 1799	2.3	37
173	How parks provide thermal comfort perception in the metropolitan cores; a case study in Madrid Mediterranean climatic zone. <i>Climate Risk Management</i> , 2020 , 30, 100245	4.6	14
172	Leader cultural intelligence and organizational performance. <i>Cogent Business and Management</i> , 2020 , 7, 1809310	1.6	7
171	Mass wasting susceptibility assessment of snow avalanches using machine learning models. <i>Scientific Reports</i> , 2020 , 10, 18363	4.9	23
170	A Lightweight Genetic Based Algorithm for Data Security in Wireless Body Area Networks. <i>IEEE Access</i> , 2020 , 8, 183460-183469	3.5	8
169	COVID-19 Outbreak Prediction with Machine Learning. <i>Algorithms</i> , 2020 , 13, 249	1.8	112
168	Novel Ensemble Approach of Deep Learning Neural Network (DLNN) Model and Particle Swarm Optimization (PSO) Algorithm for Prediction of Gully Erosion Susceptibility. <i>Sensors</i> , 2020 , 20,	3.8	55
167	Improving Aviation Safety through Modeling Accident Risk Assessment of Runway. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	4
166	The Effect of Incorporating Silica Stone Waste on the Mechanical Properties of Sustainable Concretes. <i>Materials</i> , 2020 , 13,	3.5	10
165	GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran. <i>Remote Sensing</i> , 2020 , 12, 2478	5	41
164	Derivation of Optimized Equations for Estimation of Dispersion Coefficient in Natural Streams Using Hybridized ANN With PSO and CSO Algorithms. <i>IEEE Access</i> , 2020 , 8, 156582-156599	3.5	11
163	The Impact of Natural Elements on Environmental Comfort in the Iranian-Islamic Historical City of Isfahan. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	4
162	Incorporation of Horizontal Fins into a PCM-Based Heat Sink to Enhance the Safe Operation Time: Applicable in Electronic Device Cooling. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 6308	2.6	15

161	Comparative Analysis of Machine Learning Models for Nanofluids Viscosity Assessment. <i>Nanomaterials</i> , 2020 , 10,	5.4	10
160	Brief review on thin films, perovskite solar cells and nanostructure applications. <i>Modern Physics Letters B</i> , 2020 , 34, 2030003	1.6	O
159	Zoning map for drought prediction using integrated machine learning models with a nomadic people optimization algorithm. <i>Natural Hazards</i> , 2020 , 104, 537-579	3	29
158	Predicting Stock Market Trends Using Machine Learning and Deep Learning Algorithms Via Continuous and Binary Data; a Comparative Analysis. <i>IEEE Access</i> , 2020 , 8, 150199-150212	3.5	64
157	Evaluation of Safety in Horizontal Curves of Roads Using a Multi-Body Dynamic Simulation Process. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	6
156	Voltage Regulation for Photovoltaics-Battery-Fuel Systems Using Adaptive Group Method of Data Handling Neural Networks (GMDH-NN). <i>IEEE Access</i> , 2020 , 8, 213748-213757	3.5	3
155	Robust Adaptive Synchronization of a Class of Uncertain Chaotic Systems with Unknown Time-Delay. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 8875	2.6	6
154	Modeling minimum miscibility pressure of pure/impure CO2-crude oil systems using adaptive boosting support vector regression: Application to gas injection processes. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 184, 106499	4.4	15
153	Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain. <i>Science of the Total Environment</i> , 2020 , 701, 134474	10.2	58
152	Dynamic modeling and adaptive controlling in GPS-intelligent buoy (GIB) systems based on neural-fuzzy networks. <i>Ad Hoc Networks</i> , 2020 , 103, 102149	4.8	4
151	Forecasting shear stress parameters in rectangular channels using new soft computing methods. <i>PLoS ONE</i> , 2020 , 15, e0229731	3.7	5
150	Earthquake Safety Assessment of Buildings through Rapid Visual Screening. <i>Buildings</i> , 2020 , 10, 51	3.2	14
149	Intelligent Road Inspection with Advanced Machine Learning; Hybrid Prediction Models for Smart Mobility and Transportation Maintenance Systems. <i>Energies</i> , 2020 , 13, 1718	3.1	17
148	The Role of Urban Morphology Design on Enhancing Physical Activity and Public Health. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	14
147	Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods. <i>Mathematics</i> , 2020 , 8, 323	2.3	2
146	Prediction of Thermo-Physical Properties of TiO-AlO/Water Nanoparticles by Using Artificial Neural Network. <i>Nanomaterials</i> , 2020 , 10,	5.4	40
145	Aeromechanical optimization of first row compressor test stand blades using a hybrid machine learning model of genetic algorithm, artificial neural networks and design of experiments. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2019 , 13, 892-904	4.5	41
144	Flutter speed estimation using presented differential quadrature method formulation. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2019 , 13, 804-810	4.5	39

(2019-2019)

143	Modeling temperature dependency of oil - water relative permeability in thermal enhanced oil recovery processes using group method of data handling and gene expression programming. Engineering Applications of Computational Fluid Mechanics, 2019, 13, 724-743	4.5	21
142	Limiting factors for biogas production from cow manure: energo-environmental approach. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2019 , 13, 954-966	4.5	10
141	Earth fissure hazard prediction using machine learning models. <i>Environmental Research</i> , 2019 , 179, 108	37₹Øj	37
140	Orthotropic mode II shear test fixture: losipesque modification. <i>Engineering Solid Mechanics</i> , 2019 , 93-	10 <u>8</u> 3	5
139	Support Vector Regression Integrated with Fruit Fly Optimization Algorithm for River Flow Forecasting in Lake Urmia Basin. <i>Water (Switzerland)</i> , 2019 , 11, 1934	3	27
138	Spatiotemporal dynamics assessment of snow cover to infer snowline elevation mobility in the mountainous regions. <i>Cold Regions Science and Technology</i> , 2019 , 167, 102870	3.8	7
137	Deep Learning for Detecting Building Defects Using Convolutional Neural Networks. <i>Sensors</i> , 2019 , 19,	3.8	62
136	Application of Nanosilica for inhibition of fines migration during low salinity water injection: Experimental study, mechanistic understanding, and model development. <i>Fuel</i> , 2019 , 242, 846-862	7.1	20
135	Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System. <i>Energies</i> , 2019 , 12, 289	3.1	99
134	Modeling temperature-based oil-water relative permeability by integrating advanced intelligent models with grey wolf optimization: Application to thermal enhanced oil recovery processes. <i>Fuel</i> , 2019 , 242, 649-663	7.1	39
133	Predicting solubility of CO2 in brine by advanced machine learning systems: Application to carbon capture and sequestration. <i>Journal of CO2 Utilization</i> , 2019 , 33, 83-95	7.6	34
132	Prediction of Compression Index of Fine-Grained Soils Using a Gene Expression Programming Model. <i>Infrastructures</i> , 2019 , 4, 26	2.6	43
131	Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2019 , 13, 482-492	4.5	77
130	Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2019 , 13, 529-550	4.5	29
129	Estimating Daily Dew Point Temperature Using Machine Learning Algorithms. <i>Water (Switzerland)</i> , 2019 , 11, 582	3	38
128	Review of Soft Computing Models in Design and Control of Rotating Electrical Machines. <i>Energies</i> , 2019 , 12, 1049	3.1	27
127	Estimating n-tetradecane/bitumen mixture viscosity in solvent-assisted oil recovery process using GEP and GMDH modeling approaches. <i>Petroleum Science and Technology</i> , 2019 , 37, 1640-1647	1.4	5
126	Sustainable Business Models: A Review. <i>Sustainability</i> , 2019 , 11, 1663	3.6	145

125	State of the Art of Machine Learning Models in Energy Systems, a Systematic Review. <i>Energies</i> , 2019 , 12, 1301	3.1	156
124	Modelling asphaltene precipitation titration data: A committee of machines and a group method of data handling. <i>Canadian Journal of Chemical Engineering</i> , 2019 , 97, 431-441	2.3	11
123	A Hybrid clustering and classification technique for forecasting short-term energy consumption. <i>Environmental Progress and Sustainable Energy</i> , 2019 , 38, 66-76	2.5	45
122	A Hybrid Machine Learning Approach for Daily Prediction of Solar Radiation. <i>Lecture Notes in Networks and Systems</i> , 2019 , 266-274	0.5	17
121	Numerical simulation of pressure pulsation effects of a snubber in a CNG station for increasing measurement accuracy. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2019 , 13, 642-663	4.5	26
120	Design and Validation of a Computational Program for Analysing Mental Maps: Aram Mental Map Analyzer. <i>Sustainability</i> , 2019 , 11, 3790	3.6	22
119	Investigation of submerged structuresIflexibility on sloshing frequency using a boundary element method and finite element analysis. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2019 , 13, 519-528	4.5	63
118	Snow avalanche hazard prediction using machine learning methods. <i>Journal of Hydrology</i> , 2019 , 577, 123929	6	62
117	Thermodynamic Assessment and Multi-Objective Optimization of Performance of Irreversible Dual-Miller Cycle. <i>Energies</i> , 2019 , 12, 4000	3.1	9
116	Securing IoT-Based RFID Systems: A Robust Authentication Protocol Using Symmetric Cryptography. <i>Sensors</i> , 2019 , 19,	3.8	51
115	Developing an ANFIS-PSO Model to Predict Mercury Emissions in Combustion Flue Gases. <i>Mathematics</i> , 2019 , 7, 965	2.3	28
114	The Cooling Effect of Large-Scale Urban Parks on Surrounding Area Thermal Comfort. <i>Energies</i> , 2019 , 12, 3904	3.1	26
113	Hybrid Machine Learning Model of Extreme Learning Machine Radial Basis Function for Breast Cancer Detection and Diagnosis: A Multilayer Fuzzy Expert System 2019 ,		3
112	Application of nanofluids for treating fines migration during hydraulic fracturing: Experimental study and mechanistic understanding. <i>Advances in Geo-Energy Research</i> , 2019 , 3, 198-206	6.2	29
111	Optimization Algorithm for Reduction the Size of Dixon Resultant Matrix: A Case Study on Mechanical Application. <i>Computers, Materials and Continua</i> , 2019 , 58, 567-583	3.9	3
110	A Hybrid Neuro-Fuzzy Algorithm for Prediction of Reference Evapotranspiration. <i>Lecture Notes in Networks and Systems</i> , 2019 , 235-243	0.5	17
109	Fault Diagnosis of Rotating Electrical Machines Using Multi-Label Classification. <i>Applied Sciences</i> (Switzerland), 2019 , 9, 5086	2.6	21
108	Comparative Analysis of Machine Learning Models for Prediction of Remaining Service Life of Flexible Pavement. <i>Mathematics</i> , 2019 , 7, 1198	2.3	14

(2018-2019)

107	concentration in coastal waters. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2019 , 13, 91-101	4.5	118
106	ANFIS pattern for molecular membranes separation optimization. <i>Journal of Molecular Liquids</i> , 2019 , 274, 470-476	6	53
105	Integrating synthesized citric acid-coated magnetite nanoparticles with magnetic fields for enhanced oil recovery: Experimental study and mechanistic understanding. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 174, 425-436	4.4	32
104	Prediction of remaining service life of pavement using an optimized support vector machine (case study of Semnan Firuzkuh road). <i>Engineering Applications of Computational Fluid Mechanics</i> , 2019 , 13, 188-198	4.5	40
103	An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. <i>Science of the Total Environment</i> , 2019 , 651, 2087-2096	10.2	303
102	Modeling heat capacity of ionic liquids using group method of data handling: A hybrid and structure-based approach. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 129, 7-17	4.9	24
101	Toward mechanistic understanding of asphaltene aggregation behavior in toluene: The roles of asphaltene structure, aging time, temperature, and ultrasonic radiation. <i>Journal of Molecular Liquids</i> , 2018 , 264, 410-424	6	59
100	Toward generalized models for estimating molecular weights and acentric factors of pure chemical compounds. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 2699-2717	6.7	18
99	Modeling interfacial tension in N2/n-alkane systems using corresponding state theory: Application to gas injection processes. <i>Fuel</i> , 2018 , 222, 779-791	7.1	34
98	Predicting the Future Using Web Knowledge: State of the Art Survey. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 341-349	0.4	7
97	Industrial Applications of Big Data: State of the Art Survey. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 225-232	0.4	10
96	Reviewing the Novel Machine Learning Tools for Materials Design. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 50-58	0.4	23
95	Optimal Design of Electrical Machines: State of the Art Survey. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 209-216	0.4	1
94	A Load Balancing Algorithm for Resource Allocation in Cloud Computing. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 289-296	0.4	13
93	Modeling the time-dependent characteristics of perovskite solar cells. <i>Solar Energy</i> , 2018 , 170, 969-973	6.8	22
92	An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine from the Viewpoint of Exergy and Energy Analysis. <i>Energies</i> , 2018 , 11, 860	3.1	58
91	Strategic Behavior of Retailers for Risk Reduction and Profit Increment via Distributed Generators and Demand Response Programs. <i>Energies</i> , 2018 , 11, 1602	3.1	11
90	Modeling the strain impact on refractive index and optical transmission rate. <i>Physica B: Condensed Matter</i> , 2018 , 543, 14-17	2.8	6

89	Thermal Recovery Processes 2018 , 139-186		2
88	Review on the Usage of the Multiobjective Optimization Package of modeFrontier in the Energy Sector. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 217-224	0.4	4
87	Comparison of Euler-Bernoulli and Timoshenko Beam Equations for Railway System Dynamics. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 32-40	0.4	
86	On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 81, 313-329	16.2	122
85	Flood Prediction Using Machine Learning Models: Literature Review. Water (Switzerland), 2018, 10, 153	63	376
84	Using SVM-RSM and ELM-RSM Approaches for Optimizing the Production Process of Methyl and Ethyl Esters. <i>Energies</i> , 2018 , 11, 2889	3.1	28
83	Renewable Energy Technology Selection Problem Using Integrated H-SWARA-MULTIMOORA Approach. <i>Sustainability</i> , 2018 , 10, 4481	3.6	43
82	Rheological Behavior of Surface Modified Silica Nanoparticles Dispersed in Partially Hydrolyzed Polyacrylamide and Xanthan Gum Solutions: Experimental Measurements, Mechanistic Understanding, and Model Development. <i>Energy & Energy & Ene</i>	4.1	38
81	Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. <i>Engineering Applications of Computational Fluid Mechanics</i> , 2018 , 12, 738-7	74 ⁹⁵	52
80	Modeling the detection efficiency in photodetectors with temperature-dependent mobility and carrier lifetime. <i>Superlattices and Microstructures</i> , 2018 , 122, 557-562	2.8	3
79	A soft-computing technique for prediction of water activity in PEG solutions. <i>Colloid and Polymer Science</i> , 2017 , 295, 421-432	2.4	7
78	Generalized models for predicting the critical properties of pure chemical compounds. <i>Journal of Molecular Liquids</i> , 2017 , 240, 777-793	6	15
77	Application of adaptive neuro fuzzy interface system optimized with evolutionary algorithms for modeling CO 2 -crude oil minimum miscibility pressure. <i>Fuel</i> , 2017 , 205, 34-45	7.1	60
76	Modeling interfacial tension and minimum miscibility pressure in paraffin-nitrogen systems: Application to gas injection processes. <i>Fuel</i> , 2017 , 205, 80-89	7.1	53
75	Development of robust generalized models for estimating the normal boiling points of pure chemical compounds. <i>Journal of Molecular Liquids</i> , 2017 , 242, 59-69	6	23
74	Modeling gas/vapor viscosity of hydrocarbon fluids using a hybrid GMDH-type neural network system. <i>Journal of Molecular Liquids</i> , 2017 , 236, 162-171	6	44
73	Development of a robust model for prediction of under-saturated reservoir oil viscosity. <i>Journal of Molecular Liquids</i> , 2017 , 229, 89-97	6	23
72	Implementation of soft computing approaches for prediction of physicochemical properties of ionic liquid mixtures. <i>Korean Journal of Chemical Engineering</i> , 2017 , 34, 425-439	2.8	24

71	Integration of Machine Learning and Optimization for Robot Learning. <i>Advances in Intelligent Systems and Computing</i> , 2017 , 349-355	0.4	21
70	Learning in Robotics. International Journal of Computer Applications, 2017, 157, 8-11	1.1	6
69	Learning and Intelligent Optimization for Material Design Innovation. <i>Lecture Notes in Computer Science</i> , 2017 , 358-363	0.9	17
68	A soft computing approach for the determination of crude oil viscosity: Light and intermediate crude oil systems. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2016 , 59, 1-10	5.3	42
67	A computational intelligence scheme for estimating electrical conductivity of ternary mixtures containing ionic liquids. <i>Journal of Molecular Liquids</i> , 2016 , 221, 624-632	6	18
66	Determination of asphaltene precipitation conditions during natural depletion of oil reservoirs: A robust compositional approach. <i>Fluid Phase Equilibria</i> , 2016 , 412, 235-248	2.5	19
65	Accurate determination of the CO2-crude oil minimum miscibility pressure of pure and impure CO2 streams: A robust modelling approach. <i>Canadian Journal of Chemical Engineering</i> , 2016 , 94, 253-261	2.3	47
64	A rigorous approach for determining interfacial tension and minimum miscibility pressure in paraffin-CO2 systems: Application to gas injection processes. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2016 , 63, 107-115	5.3	38
63	On the evaluation of thermal conductivity of ionic liquids: Modeling and data assessment. <i>Journal of Molecular Liquids</i> , 2016 , 224, 648-656	6	20
62	On the evaluation of density of ionic liquid binary mixtures: Modeling and data assessment. <i>Journal of Molecular Liquids</i> , 2016 , 222, 745-751	6	20
61	A smooth model for the estimation of gas/vapor viscosity of hydrocarbon fluids. <i>Journal of Natural Gas Science and Engineering</i> , 2015 , 26, 1452-1459	4.6	40
60	A rigorous approach to predict nitrogen-crude oil minimum miscibility pressure of pure and nitrogen mixtures. <i>Fluid Phase Equilibria</i> , 2015 , 399, 30-39	2.5	36
59	Application of Wilcoxon generalized radial basis function network for prediction of natural gas compressibility factor. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2015 , 50, 131-141	5.3	40
58	Experimental Determination of Interfacial Tension and Miscibility of the CO2ttrude Oil System; Temperature, Pressure, and Composition Effects. <i>Journal of Chemical & Description (Chemical & Descript</i>	2.8	128
57	Toward a predictive model for estimating viscosity of ternary mixtures containing ionic liquids. Journal of Molecular Liquids, 2014 , 200, 340-348	6	106
56	Calibrating a high-fidelity finite element model of a highway bridge using a multi-variable sensitivity-based optimisation approach. <i>Structure and Infrastructure Engineering</i> , 2014 , 10, 627-642	2.9	16
55	Application of data mining in multiobjective optimization problems. <i>International Journal for Simulation and Multidisciplinary Design Optimization</i> , 2014 , 5, A15	0.6	7
54	Decision-making Software Architecture; the Visualization and Data Mining Assisted Approach 2014 , 3, 12		3

53	Decision-Making in Complicated Geometrical Problems. <i>International Journal of Computer Applications</i> , 2014 , 87, 22-25	1.1	2
52	Prediction of sour gas compressibility factor using an intelligent approach. <i>Fuel Processing Technology</i> , 2013 , 116, 209-216	7.2	77
51	Eosinophilic ulcer of the tongue in an 80-year-old Iranian woman after a psychologically stressful event. <i>BMJ Case Reports</i> , 2013 , 2013,	0.9	1
50	Identifying damage locations under ambient vibrations utilizing vector autoregressive models and Mahalanobis distances. <i>Mechanical Systems and Signal Processing</i> , 2012 , 26, 254-267	7.8	89
49	Effect of Temperature on Daily Modal Variability of a Steel-Concrete Composite Bridge. <i>Journal of Bridge Engineering</i> , 2012 , 17, 979-983	2.7	29
48	Finite Element model updating of a skewed highway bridge using a multi-variable sensitivity-based optimization approach 2012 ,		4
47	Nonlinear modeling of the vehicle/structure interaction on a skewed highway bridge using an iterative uncoupled approach 2012 ,		2
46	Reactive Search Optimization; Application to Multiobjective Optimization Problems. <i>Applied Mathematics</i> , 2012 , 03, 1572-1582	0.4	15
45	Role of appropriate surgery in survival of patients with epithelial ovarian cancer. <i>Asian Pacific Journal of Cancer Prevention</i> , 2011 , 12, 253-7	1.7	1
44	Variable reduction for multi-objective optimization using data mining techniques; application to aerospace structures 2010 ,		3
43	The Large Scale System of Multiple Criteria Decision Making; Pre-***processing. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2010 , 43, 354-359		3
42	Time-series models for identifying damage location in structural members subjected to ambient vibrations 2010 ,		1
41	Visual analytics. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, 2010 , 11, 5-8	4.6	92
40	Rifaximin: a nonabsorbed antimicrobial in the therapy of travelers' diarrhea. <i>Digestion</i> , 1998 , 59, 708-14	3.6	80
39	Prognostic Factors Related to Recovery from Diarrhea among U.S. Students with Diarrhea in Mexico. <i>Journal of Travel Medicine</i> , 1997 , 4, 161-166	12.9	1
38	Performance Analysis of Combine Harvester Using Hybrid Model of Artificial Neural Networks Particle Swarm Optimization		5
37	Comparative analysis of Kernel-based versus BFGS-ANN and deep learning methods in monthly reference evaporation estimation		2
36	Predicting Trends of Coronavirus Disease (COVID-19) Using SIRD and Gaussian-SIRD Models		1

35	Predicting COVID-19 (Coronavirus Disease) Outbreak Dynamics Using SIR-based Models: Comparative Analysis of SIRD and Weibull-SIRD	1
34	COVID-19 Outbreak Prediction with Machine Learning	3
33	Deep Learning: A Review	18
32	Energy Consumption Prediction Using Machine Learning; A Review	19
31	Prediction of Flow Characteristics in the Bubble Column Reactor by the Artificial Pheromone-Based Communication of Biological Ants	3
30	Demand Prediction with Machine Learning Models; State of the Art and a Systematic Review of Advances	4
29	Applying ANN, ANFIS, and LSSVM Models for Estimation of Acid Solvent Solubility in Supercritical CO2	15
28	Groundwater Quality Assessment for Drinking and Agricultural Purposes in Tabriz Aquifer, Iran	8
27	Groundwater Quality Assessment for Drinking and Agricultural Purposes in Tabriz Aquifer, Iran	4
26	Performance Evaluation of Supervised Machine Learning Techniques for Efficient Detection of Emotions from Online Content	13
25	Multi-Label Classification for Fault Diagnosis of Rotating Electrical Machines	11
24	List of Deep Learning Models	15
23	State of the Art Survey of Deep Learning and Machine Learning Models for Smart Cities and Urban Sustainab	ility7
22	Deep Learning and Machine Learning in Hydrological Processes, Climate Change and Earth Systems: A Systematic Review	4
21	Advances in Machine Learning Modeling Reviewing Hybrid and Ensemble Methods	17
20	Extreme Learning Machine-Based Model for Solubility Estimation of Hydrocarbon Gases in Electrolyte Solutions	2
19	Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics	3
18	COVID-19 Pandemic Prediction for Hungary; a Hybrid Machine Learning Approach	4

17	COVID-19 Outbreak Prediction with Machine Learning. SSRN Electronic Journal,	1	26
16	COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach. <i>SSRN Electronic Journal</i> ,	1	7
15	Rapid COVID-19 Diagnosis Using Deep Learning of the Computerized Tomography Scans		2
14	COVID-19 Outbreak Prediction with Machine Learning		31
13	Flood Prediction Using Machine Learning, Literature Review		16
12	Modeling Daily Pan Evaporation in Humid Climates Using Gaussian Process Regression		11
11	Developing an ANFIS-PSO Model to Estimate Mercury Emission in Combustion Flue Gases		9
10	Urban Train Soil-Structure Interaction Modeling and Analysis		9
9	Prediction of Combine Harvester Performance Using Hybrid Machine Learning Modeling and Response Surface Methodology		13
8	Modelling Temperature Variation of Mushroom Growing Hall Using Artificial Neural Networks		12
7	Hybrid Machine Learning Model of Extreme Learning Machine Radial basis function for Breast Cancer Detection and Diagnosis; a Multilayer Fuzzy Expert System		2
6	COVID-19 Pandemic Prediction for Hungary; a Hybrid Machine Learning Approach		1
5	Data Science in Economics		2
4	COVID-19 Outbreak Prediction with Machine Learning		5
3	Coronavirus Disease (COVID-19) Global Prediction Using Hybrid Artificial Intelligence Method of ANN Trained with Grey Wolf Optimizer		1
2	Coronavirus (COVID-19) Outbreak Prediction Using Epidemiological Models of Richards Gompertz Logistic Ratkowsky and SIRD		2
1	Life Cycle Assessment and Life Cycle Cost Analysis in Infrastructure Projects: A Systematic Review		5