Yingqiang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9499113/publications.pdf Version: 2024-02-01

YINCOLANC W/I

#	Article	IF	CITATIONS
1	Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes. ACS Applied Materials & Interfaces, 2021, 13, 717-726.	4.0	34
2	Electrolyte Chemistry in 3D Metal Oxide Nanorod Arrays Deciphers Lithium Dendrite-Free Plating/Stripping Behaviors for High-Performance Lithium Batteries. Journal of Physical Chemistry Letters, 2021, 12, 4857-4866.	2.1	19
3	Unraveling the New Role of Metal–Organic Frameworks in Designing Silicon Hollow Nanocages for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 40471-40480.	4.0	13
4	Interfacial Model Deciphering Highâ€Voltage Electrolytes for High Energy Density, High Safety, and Fastâ€Charging Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2102964.	11.1	122
5	Crystal reconstruction of binary oxide hexagonal nanoplates: monocrystalline formation mechanism and high rate lithium-ion battery applications. Nanoscale, 2020, 12, 4366-4373.	2.8	8
6	Self-catalytic approach to construct graphitized carbon shell for metal oxide: In-situ triggering mechanism and high-performance lithium-ion batteries applications. Journal of Power Sources, 2020, 450, 227631.	4.0	14
7	Catalysis of silica-based anode (de-)lithiation: compositional design within a hollow structure for accelerated conversion reaction kinetics. Journal of Materials Chemistry A, 2020, 8, 12306-12313.	5.2	43
8	Carbon Nanotubes Coupled with Metal Ion Diffusion Layers Stabilize Oxide Conversion Reactions in High-Voltage Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16276-16285.	4.0	14
9	Unraveling Metal Oxide Role in Exfoliating Graphite: New Strategy to Construct Highâ€Performance Grapheneâ€Modified SiO <i>_x</i> â€Based Anode for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1910657.	7.8	78
10	An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters, 2020, 5, 807-816.	8.8	97
11	Bio-inspired heteroatom-doped hollow aurilave-like structured carbon for high-performance sodium-ion batteries and supercapacitors. Journal of Power Sources, 2020, 461, 228128.	4.0	24
12	A Designed Durable Electrolyte for Highâ€Voltage Lithiumâ€Ion Batteries and Mechanism Analysis. Chemistry - A European Journal, 2020, 26, 7930-7936.	1.7	22
13	Engineering Sodium-Ion Solvation Structure to Stabilize Sodium Anodes: Universal Strategy for Fast-Charging and Safer Sodium-Ion Batteries. Nano Letters, 2020, 20, 3247-3254.	4.5	78
14	Performance and Stability Improvement of Layered NCM Lithium-Ion Batteries at High Voltage by a Microporous Al ₂ O ₃ Sol–Gel Coating. ACS Omega, 2019, 4, 13972-13980.	1.6	57
15	New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries. ACS Energy Letters, 2019, 4, 2613-2622.	8.8	160
16	Understanding Ostwald Ripening and Surface Charging Effects in Solvothermallyâ€Prepared Metal Oxide–Carbon Anodes for High Performance Rechargeable Batteries. Advanced Energy Materials, 2019, 9, 1902194.	10.2	50
17	MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li–S battery. Nano Energy, 2019, 61, 478-485.	8.2	131
18	Lithium dendrite-free plating/stripping: a new synergistic lithium ion solvation structure effect for reliable lithium–sulfur full batteries. Chemical Communications, 2019, 55, 5713-5716.	2.2	24

YINGQIANG WU

#	Article	IF	CITATIONS
19	Metal–Organic Coordination Strategy for Obtaining Metalâ€Decorated Moâ€Based Complexes: Multiâ€dimensional Structural Evolution and Highâ€Rate Lithiumâ€Ion Battery Applications. Chemistry - A European Journal, 2019, 25, 8813-8819.	1.7	16
20	New Organic Complex for Lithium Layered Oxide Modification: Ultrathin Coating, High-Voltage, and Safety Performances. ACS Energy Letters, 2019, 4, 656-665.	8.8	97
21	An Exploration of New Energy Storage System: High Energy Density, High Safety, and Fast Charging Lithium Ion Battery. Advanced Functional Materials, 2019, 29, 1805978.	7.8	109
22	Electrochemical activation, voltage decay and hysteresis of Li-rich layered cathode probed by various cobalt content. Electrochimica Acta, 2018, 265, 115-120.	2.6	41
23	New Insights on Graphite Anode Stability in Rechargeable Batteries: Li Ion Coordination Structures Prevail over Solid Electrolyte Interphases. ACS Energy Letters, 2018, 3, 335-340.	8.8	217
24	Recognizing the Mechanism of Sulfurized Polyacrylonitrile Cathode Materials for Li–S Batteries and beyond in Al–S Batteries. ACS Energy Letters, 2018, 3, 2899-2907.	8.8	224
25	Bioinspired Architectures and Heteroatom Doping To Construct Metalâ€Oxideâ€Based Anode for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 16902-16909.	1.7	20
26	Unique Co ₃ O ₄ /nitrogen-doped carbon nanospheres derived from metal–organic framework: insight into their superior lithium storage capabilities and electrochemical features in high-voltage batteries. Journal of Materials Chemistry A, 2018, 6, 12466-12474.	5.2	85
27	Phase Inversion Strategy to Flexible Freestanding Electrode: Critical Coupling of Binders and Electrolytes for High Performance Li–S Battery. Advanced Functional Materials, 2018, 28, 1802244.	7.8	64
28	Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium–oxygen battery application. Nanoscale, 2013, 5, 10390.	2.8	40
29	CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3954.	5.2	58
30	Facile synthesis of a Co ₃ O ₄ –carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 1141-1147.	5.2	169
31	Sodium salt effect on hydrothermal carbonization of biomass: a catalyst for carbon-based nanostructured materials for lithium-ion battery applications. Green Chemistry, 2013, 15, 2722.	4.6	61
32	Coating of Al2O3 on layered Li(Mn1/3Ni1/3Co1/3)O2 using CO2 as green precipitant and their improved electrochemical performance for lithium ion batteries. Journal of Energy Chemistry, 2013, 22, 468-476.	7.1	10
33	Simultaneous surface coating and chemical activation of the Li-rich solid solution lithium rechargeable cathode and its improved performance. Electrochimica Acta, 2013, 113, 54-62.	2.6	42
34	One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries. RSC Advances, 2012, 2, 5084.	1.7	115
35	Fine control of titania deposition to prepare C@TiO2 composites and TiO2 hollow particles for photocatalysis and lithium-ion battery applications. Journal of Materials Chemistry, 2012, 22, 22135.	6.7	61
36	A new strategy for finely controlling the metal (oxide) coating on colloidal particles with tunable catalytic properties. Journal of Materials Chemistry, 2011, 21, 6654.	6.7	26

#	Article	IF	CITATIONS
37	CO2-assisted template synthesis of porous hollow bi-phase γ-/α-Fe2O3 nanoparticles with high sensor property. Journal of Materials Chemistry, 2011, 21, 17776.	6.7	58