
Sanjib Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9499095/publications.pdf Version: 2024-02-01

SANIIR RANEDIEE

#	Article	lF	CITATIONS
1	Facile access to template-shape-replicated nitrogen-rich mesoporous carbon nanospheres for highly efficient CO ₂ capture and contaminant removal. Materials Advances, 2022, 3, 665-671.	2.6	8
2	Ultrafast and green ionic liquid-mediated controlled cationic polymerization towards amphiphilic diblock copolymers. Polymer Chemistry, 2022, 13, 517-526.	1.9	3
3	Facile Fabrication of Functional Mesoporous Polymer Nanospheres for CO2 Capture. Industrial & Engineering Chemistry Research, 2022, 61, 1140-1147.	1.8	3
4	Straightforward synthesis of multifunctional porous polymer nanomaterials for CO ₂ capture and removal of contaminants. Polymer Chemistry, 2022, 13, 2165-2172.	1.9	3
5	An amino acid-derived ABCBA-type antifouling biohybrid with multi-stimuli responsivity and contaminant removal capability. Polymer Chemistry, 2022, 13, 1960-1969.	1.9	4
6	Enhancement of electrochemical performances of Li-S batteries using PPESK and Nelumbo nucifera derived porous carbon modified separator. Materials Letters, 2022, 315, 131935.	1.3	4
7	Multi-stimuli responsive amphiphilic diblock copolymers by a combination of ionic liquid-mediated cationic polymerization and recyclable alloy nanoparticle-mediated photoRDRP. European Polymer Journal, 2022, 175, 111348.	2.6	4
8	Ultrafast, green and recyclable photoRDRP in an ionic liquid towards multi-stimuli responsive amphiphilic copolymers. Polymer Chemistry, 2021, 12, 4954-4960.	1.9	6
9	Well-Defined Fluorinated Copolymers: Current Status and Future Perspectives. Accounts of Materials Research, 2021, 2, 242-251.	5.9	31
10	Anisotropic and Selfâ€Healing Copolymer with Multiresponsive Capability via Recyclable Alloyâ€Mediated RDRP. Macromolecular Rapid Communications, 2021, 42, e2100096.	2.0	7
11	<scp>l</scp> -Histidine-Derived Smart Antifouling Biohybrid with Multistimuli Responsivity. Biomacromolecules, 2021, 22, 3941-3949.	2.6	9
12	Facile access to functional polyacrylates with dual stimuli response and tunable surface hydrophobicity. Polymer Chemistry, 2021, 12, 3042-3051.	1.9	9
13	Six-Membered Rings with Two or More Heteroatoms With at Least One Silicon to Lead. , 2021, , .		0
14	Recoverable and recyclable nickel–cobalt magnetic alloy nanoparticle catalyzed reversible deactivation radical polymerization of methyl methacrylate at 25 °C. Polymer Chemistry, 2020, 11, 287-291.	1.9	10
15	Macromolecular engineering approach for the preparation of new architectures from fluorinated olefins and their applications. Progress in Polymer Science, 2020, 106, 101255.	11.8	46
16	Emerging Opportunities in (<i>co</i>)Polymerization of Alkyl 2-(Trifluoromethyl)acrylates and 2-(Trifluoromethyl)acrylates and Their Applications. , 2020, , 735-779.		2
17	Tryptophan-based styryl homopolymer and polyzwitterions with solvent-induced UCST, ion-induced LCST and pH-induced UCST. Polymer Chemistry, 2019, 10, 526-538.	1.9	22
18	Functional fluorinated polymer materials and preliminary self-healing behavior. Polymer Chemistry, 2019, 10, 1993-1997.	1.9	24

SANJIB BANERJEE

#	Article	IF	CITATIONS
19	Synthesis and properties of poly(trifluoroethylene) <i>via</i> a persistent radical mediated polymerization of trifluoroethylene. Polymer Chemistry, 2018, 9, 894-903.	1.9	5
20	Organometallicâ€Mediated Radical Polymerization of Vinylidene Fluoride. Angewandte Chemie, 2018, 130, 2984-2987.	1.6	16
21	Organometallicâ€Mediated Radical Polymerization of Vinylidene Fluoride. Angewandte Chemie - International Edition, 2018, 57, 2934-2937.	7.2	66
22	Styrene and substituted styrene grafted functional polyolefins <i>via</i> nitroxide mediated polymerization. Polymer Chemistry, 2018, 9, 307-314.	1.9	9
23	A degradable fluorinated surfactant for emulsion polymerization of vinylidene fluoride. Chemical Communications, 2018, 54, 11399-11402.	2.2	25
24	Alternating radical copolymerization of vinyl acetate and tert-butyl-2-trifluoromethacrylate. European Polymer Journal, 2018, 104, 164-169.	2.6	10
25	Syntheses of 2-(trifluoromethyl)acrylate-containing block copolymers <i>via</i> RAFT polymerization using a universal chain transfer agent. Polymer Chemistry, 2018, 9, 3511-3521.	1.9	10
26	Poly(vinylidene fluoride) Containing Phosphonic Acid as Anticorrosion Coating for Steel. ACS Applied Materials & Interfaces, 2017, 9, 6433-6443.	4.0	35
27	Poly(fluoroacrylate)s with tunable surface hydrophobicity via radical copolymerization of 2,2,2-trifluoroethyl α-fluoroacrylate and 2-(trifluoromethyl)acrylic acid. Polymer Chemistry, 2017, 8, 1978-1988.	1.9	13
28	A stimuli-responsive methionine-based zwitterionic methacryloyl sulfonium sulfonate monomer and the corresponding antifouling polymer with tunable thermosensitivity. Polymer Chemistry, 2017, 8, 3164-3176.	1.9	32
29	Organometallicâ€Mediated Alternating Radical Copolymerization of <i>tert</i> â€Butylâ€2â€Trifluoromethacrylate with Vinyl Acetate and Synthesis of Block Copolymers Thereof. Macromolecular Rapid Communications, 2017, 38, 1700203.	2.0	27
30	Decomposition of fluoroelastomer: Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 307 Td (fluoride-ter-he Polymer Journal, 2017, 94, 322-331.	xafluoropr 2.6	opylene-ter-t 14
31	Synthesis of ω-lodo and Telechelic Diiodo Vinylidene Fluoride-Based (Co)polymers by Iodine Transfer Polymerization Initiated by an Innovative Persistent Radical. Macromolecules, 2017, 50, 203-214.	2.2	18
32	Well-defined multiblock poly(vinylidene fluoride) and block copolymers thereof: a missing piece of the architecture puzzle. Chemical Communications, 2017, 53, 10910-10913.	2.2	27
33	Vinylidene Fluoride-Based Polymer Network via Cross-Linking of Pendant Triethoxysilane Functionality for Potential Applications in Coatings. Macromolecules, 2017, 50, 9329-9339.	2.2	20
34	Bis(formylphenolato)cobalt(II)-Mediated Alternating Radical Copolymerization of tert-Butyl 2-Trifluoromethylacrylate with Vinyl Acetate. Polymers, 2017, 9, 702.	2.0	15
35	Synthesis of Chain End Functional Polymers by Living Cationic Polymerization Method. , 2017, , 127-147.		0
36	Towards new strategies for the synthesis of functional vinylidene fluoride-based copolymers with tunable wettability. Polymer Chemistry, 2016, 7, 4004-4015.	1.9	25

SANJIB BANERJEE

#	Article	lF	CITATIONS
37	Kinetic and mechanistic aspects of the iodine transfer copolymerization of vinylidene fluoride with 2,3,3,3-tetrafluoro-1-propene and functionalization into I‰-hydroxy fluorinated copolymers. Polymer Chemistry, 2016, 7, 6099-6109.	1.9	15
38	Nitroxide-Mediated Alternating Copolymerization of Vinyl Acetate with <i>tert</i> -Butyl-2-trifluoromethacrylate Using a SG1-Based Alkoxyamine. ACS Macro Letters, 2016, 5, 1232-1236.	2.3	39
39	Living cationic polymerization and polyhomologation: an ideal combination to synthesize functionalized polyethylene–polyisobutylene block copolymers. Polymer Chemistry, 2016, 7, 1217-1220.	1.9	24
40	Self-healing polymer sealant for encapsulating flexible solar cells. Solar Energy Materials and Solar Cells, 2016, 145, 418-422.	3.0	45
41	Cationic Polymerization of Nonpolar Vinyl Monomers for Producing High Performance Polymers. , 2016, , .		3
42	Combined atom-transfer radical polymerization and ring-opening polymerization to design polymer-polypeptide copolymer conjugates toward self-aggregated hybrid micro/nanospheres for dye encapsulation. Journal of Polymer Science Part A, 2015, 53, 2313-2319.	2.5	25
43	Structural characterization of telechelic polyisobutylene diol. Journal of Chromatography A, 2015, 1376, 98-104.	1.8	13
44	Photoinduced Smart, Self-Healing Polymer Sealant for Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 2064-2072.	4.0	110
45	Dual-Stimuli-Responsive <scp>l</scp> -Serine-Based Zwitterionic UCST-Type Polymer with Tunable Thermosensitivity. Macromolecules, 2015, 48, 4957-4966.	2.2	100
46	Polymerization of isobutylene catalyzed by EtAlCl ₂ /bis(2-chloroethyl) ether complex in steel vessels. Polymer Chemistry, 2015, 6, 4902-4910.	1.9	23
47	Kinetic and Mechanistic Studies of the Polymerization of Isobutylene Catalyzed by EtAlCl ₂ /Bis(2-chloroethyl) Ether Complex in Hexanes. Macromolecules, 2015, 48, 5474-5480.	2.2	30
48	Diblock Copolymers with Miscible Blocks via Oneâ€Pot Sequential Cationic Polymerization and Their Blockâ€Lengthâ€Dependent Vesicular Aggregation. Macromolecular Chemistry and Physics, 2014, 215, 440-451.	1.1	9
49	Fluorescent Amphiphilic PEGâ€Peptideâ€PEG Triblock Conjugate Micelles for Cell Imaging. Macromolecular Bioscience, 2014, 14, 929-935.	2.1	17
50	Specific Counterion Repercussions on the Thermal, pH-Response, and Electrochemical Properties of Side-Chain Leucine Based Chiral Polyelectrolytes. Langmuir, 2014, 30, 13430-13437.	1.6	11
51	In situ synthesis of ultra-small platinum nanoparticles using a water soluble polyphenolic polymer with high catalytic activity. RSC Advances, 2014, 4, 51745-51753.	1.7	13
52	Graft copolymers via combination of cationic polymerization and atom transfer radical polymerization and their phase separation into spherical/worm-like nanostructures. Colloid and Polymer Science, 2014, 292, 2217-2226.	1.0	9
53	Surface confined atom transfer radical polymerization: access to custom library of polymer-based hybrid materials for speciality applications. Polymer Chemistry, 2014, 5, 4153.	1.9	38
54	Control of Molecular Weight and Tacticity in Stereospecific Living Cationic Polymerization of αâ€Methylstyrene at 0 °C Using FeCl ₃ â€Based Initiators: Effect of Tacticity on Thermal Properties. Macromolecular Chemistry and Physics, 2013, 214, 1332-1344.	1.1	22

SANJIB BANERJEE

#	Article	IF	CITATIONS
55	Aminoâ€Acidâ€Based Zwitterionic Polymer and Its Cu(II)â€Induced Aggregation into Nanostructures: A Template for CuS and CuO Nanoparticles. Macromolecular Rapid Communications, 2013, 34, 1480-1486.	2.0	31
56	In situ prepared mesoporous silica nanosphere supported palladium(ii) 2-aminopyridine complex catalyst for Suzuki–Miyaura cross-coupling reaction in water. Journal of Materials Chemistry, 2012, 22, 20434.	6.7	24
57	Peptideâ€poly(εâ€caprolactone) biohybrids by graftingâ€from ringâ€opening polymerization: Synthesis, aggregation, and crystalline properties. Journal of Polymer Science Part A, 2012, 50, 2130-2141.	2.5	16
58	Surfaceâ€Confined Atom Transfer Radical Polymerization from Sacrificial Mesoporous Silica Nanospheres for Preparing Mesoporous Polymer/Carbon Nanospheres with Faithful Shape Replication: Functional Mesoporous Materials. Advanced Functional Materials, 2012, 22, 4751-4762.	7.8	29
59	Room temperature living cationic polymerization of styrene with HX-styrenic monomer adduct/FeCl3 systems in the presence of tetrabutylammonium halide and tetraalkylphosphonium bromide salts. Polymer, 2010, 51, 1258-1269.	1.8	27
60	Free radical polymerization of alkyl methacrylates with N,N-dimethylanilinium p-toluenesulfonate at above ambient temperature: a quasi-living system. Polymer Chemistry, 2010, 1, 1689.	1.9	1
61	Ultrasound-Induced In Situ Formation of Coordination Organogels from Isobutyric Acids and Zinc Oxide Nanoparticles. Langmuir, 2010, 26, 6576-6582.	1.6	13
62	Peptideâ^'Polymer Bioconjugates via Atom Transfer Radical Polymerization and Their Solution Aggregation into Hybrid Micro/Nanospheres for Dye Uptake. Macromolecules, 2010, 43, 4050-4061.	2.2	41