Juan Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9498980/publications.pdf

Version: 2024-02-01

567281 552781 62 837 15 26 citations h-index g-index papers 62 62 62 707 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Complex impedance and electrical conduction analysis of Ho ₂ O ₃ doped CaCu ₃ Ti ₄ O ₁₂ NTC ceramics. Journal of Asian Ceramic Societies, 2022, 10, 165-177.	2.3	6
2	Polarization-induced phase structure transition and change of photoluminescence in Er3+-doped (Ba,) Tj ETQq0	O OʻrgBT /	Ovgrlock 10 Ti
3	Optimized piezoelectric properties and temperature stability in PSNâ€PMNâ€PT by adjusting the phase structure and grain size. Journal of the American Ceramic Society, 2021, 104, 6254-6265.	3.8	4
4	Reversible and irreversible domain wall dynamics in $[011]$ (sub) C(/sub) oriented relaxor ferroelectric single crystals. Journal of the American Ceramic Society, 2020, 103, 3257-3264.	3.8	4
5	Dielectric relaxation, impedance spectra, temperature stability and electrical properties of Sr2MnSbO6-modified KNN ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 959-966.	2.2	3
6	Large electrostrictive effect and strong photoluminescence properties in Sm2O3-modified lead-free potassium sodium niobate-based piezoelectric ceramics. Journal of Materiomics, 2020, 6, 768-780.	5.7	9
7	Intrinsic piezoelectricity in (K,Na)NbO3-based lead-free single crystal: Piezoelectric anisotropy and its evolution with temperature. Applied Physics Letters, 2020, 117 , .	3.3	4
8	High-energy storage performance of (1 â^' x)[0.935(Bi0.5Na0.5)TiO3â€"0.065BaTiO3]â€"xBa(Zr0.3Ti0.7)O3 ceramics with wide temperature range. Journal of Materials Science: Materials in Electronics, 2020, 31, 9974-9981.	2,2	15
9	Electrical properties and luminescence properties of 0.96(K0.48Na0.52)(Nb0.95Sb0.05)–0.04Bi0.5(Na0.82K0.18)0.5ZrO3-xSm lead-free ceramics. Journal of Advanced Ceramics, 2020, 9, 72-82.	17.4	27
10	The photoluminescence and piezoelectric properties of Eu2O3 doped KNN-based ceramics. Journal of Alloys and Compounds, 2020, 829, 154518.	5 . 5	18
11	Intrinsic and extrinsic dielectric contributions to the electrical properties in CaZrO3-doped KNN-based electrical/optical multifunctional ceramics. Journal of Materials Science, 2020, 55, 5741-5749.	3.7	9
12	Enhanced piezoelectric properties in M (M = Co or Zn)-doped Ba0.99Ca0.01 Ti0.98Zr0.02O3 ceramics. Ceramics International, 2020, 46, 17351-17360.	4.8	32
13	The impedance, dielectric and piezoelectric properties of Tb4O7 and Tm2O3 doped KNN ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 4352-4358.	2.2	16
14	Large electrostrictive effect and high energy storage performance of Pr3+-doped PIN-PMN-PT multifunctional ceramics in the ergodic relaxor phase. Journal of the European Ceramic Society, 2019, 39, 4060-4069.	5 . 7	49
15	Evaluation of reversible and irreversible domain wall motions in relaxor ferroelectrics: Influence of acceptor ions. Applied Physics Letters, 2019, 114, .	3.3	10
16	Temperature stability and electrical properties of Tm2O3 doped KNN-based ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 4716-4725.	2.2	9
17	Energy transfer and luminescence properties of a green-to-red color tunable phosphor Sr8MgY(PO4)7:Tb3+,Eu3+. Journal of Materials Science: Materials in Electronics, 2019, 30, 9421-9428.	2.2	10
18	Photoluminescence and impedance properties of rare-earth doped (K0.5Na0.5)NbO3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 9-16.	2.2	18

#	Article	IF	Citations
19	The effects of terbium oxide on phase transition and electronic properties of potassium-sodium niobate-based ceramics. Journal of Alloys and Compounds, 2019, 776, 984-992.	5.5	5
20	Effect of MnO on the microstructure and electrical properties of SnO2–Zn2SnO4 ceramic composites. Journal of Materials Science: Materials in Electronics, 2019, 30, 3865-3870.	2.2	8
21	Effect of SmAlO3 doping on the properties of (1-x)(K0.44Na0.52Li0.04)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics. Journal of Electroceramics, 2019, 42, 74-78.	2.0	2
22	Lead-free rare earth-modified (K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3 ceramics: phase structure, electrical and photoluminescence properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 4791-4800.	2.2	6
23	Poling effects on the structural, electrical and photoluminescence properties in Sm doped BCST piezoelectric ceramics. Journal of Materials Chemistry C, 2018, 6, 11312-11319.	5.5	23
24	Influence of orientation on dielectric and ferroelectric properties of the BNT-BT-ST Thin films. Journal of Materials Science: Materials in Electronics, 2018, 29, 20952-20958.	2.2	2
25	Strong red emission and enhanced electrostrain in (Bi0.5Na0.5)0.935â°'xPrxBa0.065Ti1â°'xSbxO3 lead-free multifunctional ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 13810-13817.	2.2	4
26	Mn doped ternary relaxor single crystal with high shear piezoelectricity and improved stability. Ceramics International, 2018, 44, 18672-18677.	4.8	3
27	Rare-earth doped (K0.5Na0.5)NbO3 multifunctional ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 5288-5294.	2.2	7
28	Enhanced piezoelectric properties with a high strain in (K0.44Na0.52Li0.04)(Nb0.86Ta0.1Sb0.04)O3â^'x wt%Sc2O3 lead-free ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 224, 110-116.	3.5	14
29	Thickness dependent dielectric and piezoelectric properties of BNT–BT–ST thin films. Ferroelectrics, 2017, 516, 140-147.	0.6	0
30	Improved Piezoelectricity in (KO.44Na0.52Li0.04) (Nb0.91Ta0.05Sb0.04)O3-xBi0.25Na0.25NbO3 Lead-Free Piezoelectric Ceramics. Journal of Electronic Materials, 2017, 46, 116-122.	2.2	3
31	Improved piezoelectricity and high strain response of (1Ââ^'Âx)(0.948K0.5Na0.5NbO3Ââ^'Â0.052LiSbO3)Ââ^'ÂxBi ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 1211-1216.	2 <u>03</u> 2.2	7
32	Electric Field Cycling Induced Large Electrostrain in Aged (K _{0.5} Na _{0.5})NbO ₃ â€"Cu Leadâ€Free Piezoelectric Ceramics. Journal of the American Ceramic Society, 2016, 99, 402-405.	3.8	22
33	Field-induced large strain in lead-free (Bi 0.5 Na 0.5) 1â°'x Ba x Ti 0.98 (Fe 0.5 Ta 0.5) 0.02 O 3 piezoelectric ceramics. Journal of Alloys and Compounds, 2016, 677, 96-104.	5.5	37
34	Enhanced temperature stability and fatigue-resistant behavior in MgTiO3-doped 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. Ceramics International, 2016, 42, 8051-8057.	4.8	4
35	Bright upconversion emission and enhanced piezoelectric properties in Er-modified bismuth layer-structured SrCaBi4Ti5O18 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 5259-5263.	2.2	3
36	Enhanced dielectric and piezoelectric properties of (100) oriented Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 thin films. Journal of Materials Science: Materials in Electronics, 2016, 27, 8911-8915.	2.2	2

#	Article	IF	CITATIONS
37	(K0.5Na0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3–SrZrO3 ceramics with good fatigue-resistance and temperature-stable piezoelectric properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 13249-13258.	2.2	4
38	Structure and electrical properties of lead-free Sr _{1â^'x} (K,Ce) _{x/2} (Na _{0.5} Bi _{0.5})Bi ₄ Ti ₅ <td>>⊙∡osub>1</td> <td>84/sub></td>	> ⊙ ∡osub>1	8 4 /sub>
39	Enhanced electrical properties of lead-free (1Ââ^'Âx)(K0.44Na0.52Li0.04)(Nb0.91Ta0.05Sb0.04)O3â€"xSrZrO3 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 6535-6541.	2.2	5
40	Electric field-induced ultrahigh strain and large piezoelectric effect in Bi $1/2$ Na $1/2$ TiO 3 -based lead-free piezoceramics. Journal of the European Ceramic Society, 2016, 36, 489-496.	5.7	96
41	Influence of B-site non-stoichiometry on electrical properties of (K0.458Na0.542)0.96Li0.04Nb0.85Ta0.15Sb x O3 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 1197-1200.	2.2	2
42	Effects of BiFe 0.5 Ta 0.5 O 3 addition on electrical properties of K 0.5 Na 0.5 NbO 3 lead-free piezoelectric ceramics. Ceramics International, 2016, 42, 1943-1949.	4.8	15
43	Effect of (Bi _{0.5} K _{0.5})TiO ₃ on the electrical properties, thermal and fatigue behavior of (K _{0.5} Na _{0.5})NbO ₃ -based lead-free piezoelectrics. Journal of Materials Research, 2015, 30, 2018-2029.	2.6	14
44	Bright reddish-orange emission and good piezoelectric properties of Sm2O3-modified (K0.5Na0.5)NbO3-based lead-free piezoelectric ceramics. Journal of Applied Physics, 2015, 117, .	2.5	48
45	Enhanced thermal stability and fatigue resistance in MTiO3-modified (K0.5Na0.5)0.94Li0.06NbO3 lead-free piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 7867-7872.	2.2	10
46	Structure and electrical properties of Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics. RSC Advances, 2015, 5, 41646-41652.	3.6	19
47	Lead-free electrostrictive (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3–(K0.5Na0.5)NbO3 ceramics with good thermostability and fatigue-free behavior. Journal of Materials Science, 2015, 50, 5328-5336.	3.7	48
48	Investigation of structural and electrical properties of B-site complex ion (Nd1/2Ta1/2)4+-doped Bi1/2Na1/2TiO3 lead-free piezoelectric ceramic. Journal of Materials Science: Materials in Electronics, 2015, 26, 5409-5415.	2.2	4
49	Large strain response and fatigue-resistant behavior in lead-free Bi _{0.5} (Na _{0.80} K _{0.20}) _{0.5} TiO ₃ –(K _{0.5(M = Sb, Ta) ceramics. RSC Advances, 2015, 5, 82605-82616.}	b %N a∢sub	> 0 ⴥ
50	Largely enhanced piezoelectric and luminescent properties of Er doped BST ceramics. RSC Advances, 2015, 5, 91903-91907.	3.6	10
51	High strain in (Bi _{1/2} Na _{1/2} –Sr ₃ 33343343433434343434344 <td>sub&FeNb</td> <td><⊴ub>2u</td>	sub&FeNb	< ⊴ ub>2u
52	Microstructure and piezoelectric properties of Ho2O3 doped (KO.4NaO.6)O.95LiO.05NbO.95SbO.05O3 lead-free ceramics near the rhombohedral–orthorhombic phase boundary. Journal of Materials Science: Materials in Electronics, 2015, 26, 9654-966O.	2.2	2
53	Properties of B-site non-stoichiometric (K0.5Na0.5)(Nb0.9Ta0.1)1+x O3 lead-free piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 1085-1088.	2.2	2
54	Sintering and electrical properties of La-modified (Na0.52K0.45Li0.03)1â^3xLax(Nb0.88Sb0.09Ta0.03)O3 lead-free ceramics. Ceramics International, 2014, 40, 4319-4322.	4.8	11

#	Article	IF	CITATION
55	SmAlO 3 -modified (K 0.5 Na 0.5) 0.95 Li 0.05 Sb 0.05 Nb 0.95 O 3 lead-free ceramics with a wide sintering temperature range. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 1027-1031.	3.5	10
56	Effect of chemical plating Zn on DC-etching behavior of Al foil in HCl–H2SO4. Transactions of Nonferrous Metals Society of China, 2013, 23, 3650-3657.	4.2	16
57	Piezoelectric properties and time stability of lead-free (Na0.52K0.44Li0.04)Nb1â^â^3Cb Ta O3 ceramics. Ceramics International, 2013, 39, 2135-2139.	4.8	18
58	Dielectric and piezoelectric properties of (K0.48Na0.52)Nb1 \hat{a} °x (Mo3/4Sr1/4) x O3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2012, 23, 2053-2056.	2.2	3
59	Effects of CaAl2O4 on the electrical properties and temperature stability of (Na0.53K0.404Li0.066)Nb0.92Sb0.08O3 ceramics. Journal of Alloys and Compounds, 2012, 541, 454-457.	5.5	13
60	Electrical properties of B site substituted (K0.48Na0.52)(W2/3Bi1/3)xNb1â^'xO3 piezoceramics. Journal of Materials Science: Materials in Electronics, 2012, 23, 977-980.	2.2	12
61	Structural, dielectric and piezoelectric features of (Na0.52K0.44Li0.04)Nb0.87Sb0.08Ta0.05O3 ceramics. Materials Letters, 2012, 79, 89-91.	2.6	17
62	Microstructure and electrical properties of (Na1.015â^'xKx)NbO3 lead-free piezoceramics. Journal of Materials Science: Materials in Electronics, 2011, 22, 1282-1285.	2.2	5