Ward J J Van Pelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9498320/publications.pdf

Version: 2024-02-01

361413 377865 1,302 38 20 34 citations h-index g-index papers 60 60 60 1375 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. Cryosphere, 2017, 11, 949-970.	3.9	173
2	Simulating melt, runoff and refreezing on Nordenski $\tilde{A}\P$ ldbreen, Svalbard, using a coupled snow and energy balance model. Cryosphere, 2012, 6, 641-659.	3.9	95
3	A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). Cryosphere, 2019, 13, 2259-2280.	3.9	79
4	Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model version 0.6. Geoscientific Model Development, 2015, 8, 1613-1635.	3.6	78
5	Reconciling Svalbard Glacier Mass Balance. Frontiers in Earth Science, 2020, 8, .	1.8	77
6	An iterative inverse method to estimate basal topography and initialize ice flow models. Cryosphere, 2013, 7, 987-1006.	3.9	62
7	Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature, 2022, 601, 374-379.	27.8	56
8	Multidecadal climate and seasonal snow conditions in Svalbard. Journal of Geophysical Research F: Earth Surface, 2016, 121, 2100-2117.	2.8	54
9	Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. Journal of Glaciology, 2015, 61, 731-744.	2.2	53
10	Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications, 2020, 11, 4597.	12.8	52
11	Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities. Cryosphere, 2017, 11, 2691-2710.	3.9	49
12	Using SAR satellite data time series for regional glacier mapping. Cryosphere, 2018, 12, 867-890.	3.9	46
13	The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet. Cryosphere, 2020, 14, 3785-3810.	3.9	38
14	Dynamic perennial firn aquifer on an Arctic glacier. Geophysical Research Letters, 2015, 42, 1418-1426.	4.0	37
15	Numerical simulations of cyclic behaviour in the Parallel Ice Sheet Model (PISM). Journal of Glaciology, 2012, 58, 347-360.	2.2	37
16	Basal dynamics of Kronebreen, a fast-flowing tidewater glacier in Svalbard: non-local spatio-temporal response to water input. Journal of Glaciology, 2017, 63, 1012-1024.	2.2	31
17	Inverse estimation of snow accumulation along a radar transect on Nordenskiöldbreen, Svalbard. Journal of Geophysical Research F: Earth Surface, 2014, 119, 816-835.	2.8	29
18	Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard. Cryosphere, 2018, 12, 609-625.	3.9	29

#	Article	IF	CITATIONS
19	Simulating climatic mass balance, seasonal snow development and associated freshwater runoff in the Kongsfjord basin, Svalbard (1980–2016). Journal of Glaciology, 2018, 64, 943-956.	2.2	27
20	The Changing Impact of Snow Conditions and Refreezing on the Mass Balance of an Idealized Svalbard Glacier. Frontiers in Earth Science, 2016, 4, .	1.8	26
21	Results from the Ice Thickness Models Intercomparison eXperiment Phase 2 (ITMIX2). Frontiers in Earth Science, 2021, 8, .	1.8	22
22	Parameterizing Deep Water Percolation Improves Subsurface Temperature Simulations by a Multilayer Firn Model. Frontiers in Earth Science, 2017, 5, .	1.8	16
23	Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble. Journal of Glaciology, 2021, 67, 485-499.	2.2	16
24	A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen. Cryosphere, 2015, 9, 767-779.	3.9	13
25	Characterization of seasonal glacial seismicity from a single-station on-ice record at Holtedahlfonna, Svalbard. Annals of Glaciology, 2019, 60, 23-36.	1.4	13
26	Closing the mass budget of a tidewater glacier: the example of Kronebreen, Svalbard. Journal of Glaciology, 2019, 65, 136-148.	2.2	13
27	Dynamic Response of a High Arctic Glacier to Melt and Runoff Variations. Geophysical Research Letters, 2018, 45, 4917-4926.	4.0	12
28	A plot-scale study of firn stratigraphy at Lomonosovfonna, Svalbard, using ice cores, borehole video and GPR surveys in 2012–14. Journal of Glaciology, 2017, 63, 67-78.	2.2	10
29	A synthetic ice core approach to estimate ion relocation in an ice field site experiencing periodical melt: a case study on Lomonosovfonna, Svalbard. Cryosphere, 2016, 10, 961-976.	3.9	9
30	Thermal conductivity of firn at Lomonosovfonna, Svalbard, derived from subsurface temperature measurements. Cryosphere, 2019, 13, 1843-1859.	3.9	6
31	Elemental and water-insoluble organic carbon in Svalbard snow: a synthesis of observations during 2007–2018. Atmospheric Chemistry and Physics, 2021, 21, 3035-3057.	4.9	6
32	Direct photogrammetry with multispectral imagery for UAV-based snow depth estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 186, 1-18.	11.1	6
33	Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach. Cryosphere, 2021, 15, 3181-3205.	3.9	5
34	Comparison of snow accumulation events on two High-Arctic glaciers to model-derived and observed precipitation. Polar Research, 2019, 38, .	1.6	5
35	A Compilation of Snow Cover Datasets for Svalbard: A Multi-Sensor, Multi-Model Study. Remote Sensing, 2021, 13, 2002.	4.0	4
36	Complementary Approaches Towards a Universal Model of Glacier Surges. Frontiers in Earth Science, 2021, 9, .	1.8	4

#	Article	IF	CITATIONS
37	Water content of firn at Lomonosovfonna, Svalbard, derived from subsurface temperature measurements. Journal of Glaciology, 2021, 67, 921-932.	2.2	3
38	Seasonal glacier and snow loading in Svalbard recovered from geodetic observations. Geophysical Journal International, 0, , .	2.4	2