
Jesse Rinehart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9498130/publications.pdf Version: 2024-02-01

IFSSE DINEHADT

#	Article	IF	CITATIONS
1	Chemoselective restoration of para-azido-phenylalanine at multiple sites in proteins. Cell Chemical Biology, 2022, 29, 1046-1052.e4.	2.5	2
2	Comprehensive Analysis of Metabolic Isozyme Targets in Cancer. Cancer Research, 2022, 82, 1698-1711.	0.4	4
3	Hyperosmotic stress alters the RNA polymerase II interactome and induces readthrough transcription despite widespread transcriptional repression. Molecular Cell, 2021, 81, 502-513.e4.	4.5	61
4	Targeting Pyruvate Kinase M2 Phosphorylation Reverses Aggressive Cancer Phenotypes. Cancer Research, 2021, 81, 4346-4359.	0.4	22
5	Deacylated tRNA Accumulation Is a Trigger for Bacterial Antibiotic Persistence Independent of the Stringent Response. MBio, 2021, 12, e0113221.	1.8	5
6	Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function. Cell Reports, 2021, 36, 109416.	2.9	5
7	The mechanism of β-N-methylamino-l-alanine inhibition of tRNA aminoacylation and its impact on misincorporation. Journal of Biological Chemistry, 2020, 295, 1402-1410.	1.6	12
8	A Membrane-Bound Diacylglycerol Species Induces PKCϊμ-Mediated Hepatic Insulin Resistance. Cell Metabolism, 2020, 32, 654-664.e5.	7.2	83
9	Metabolic stress promotes stop-codon readthrough and phenotypic heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22167-22172.	3.3	19
10	Mechanisms involved in AMPK-mediated deposition of tight junction components to the plasma membrane. American Journal of Physiology - Cell Physiology, 2020, 318, C486-C501.	2.1	5
11	Multi-Tissue Acceleration of the Mitochondrial Phosphoenolpyruvate Cycle Improves Whole-Body Metabolic Health. Cell Metabolism, 2020, 32, 751-766.e11.	7.2	41
12	The mechanism of β-N-methylamino-l-alanine inhibition of tRNA aminoacylation and its impact on misincorporation. Journal of Biological Chemistry, 2020, 295, 1402-1410.	1.6	21
13	Expression of authentic post-translationally modified proteins in organisms with expanded genetic codes. Methods in Enzymology, 2019, 626, 539-559.	0.4	3
14	Considering the Links Between Nonalcoholic Fatty Liver Disease and Insulin Resistance: Revisiting the Role of Protein Kinase C ε. Hepatology, 2019, 70, 2217-2220.	3.6	6
15	Comprehensive profiling of the STE20 kinase family defines features essential for selective substrate targeting and signaling output. PLoS Biology, 2019, 17, e2006540.	2.6	41
16	Convergent Identification and Interrogation of Tumor-Intrinsic Factors that Modulate Cancer Immunity InÂVivo. Cell Systems, 2019, 8, 136-151.e7.	2.9	14
17	Alanyl-tRNA Synthetase Quality Control Prevents Global Dysregulation of the Escherichia coli Proteome. MBio, 2019, 10, .	1.8	20
18	Distinct Hepatic PKA and CDK Signaling Pathways Control Activity-Independent Pyruvate Kinase Phosphorylation and Hepatic Glucose Production. Cell Reports, 2019, 29, 3394-3404.e9.	2.9	8

Jesse Rinehart

#	Article	IF	CITATIONS
19	The ABCs of PTMs. Nature Chemical Biology, 2018, 14, 188-192.	3.9	67
20	PKCε contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8996-E9005.	3.3	51
21	The NEDD8 E3 ligase DCNL5 is phosphorylated by IKK alpha during Toll-like receptor activation. PLoS ONE, 2018, 13, e0199197.	1.1	2
22	Encoding human serine phosphopeptides in bacteria for proteome-wide identification of phosphorylation-dependent interactions. Nature Biotechnology, 2018, 36, 638-644.	9.4	30
23	Kinase Substrate Profiling Using a Proteome-wide Serine-Oriented Human Peptide Library. Biochemistry, 2018, 57, 4717-4725.	1.2	16
24	Organisms with alternative genetic codes resolve unassigned codons via mistranslation and ribosomal rescue. ELife, 2018, 7, .	2.8	16
25	Phosphorylation by PKC and PKA regulate the kinase activity and downstream signaling of WNK4. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E879-E886.	3.3	47
26	MS-READ: Quantitative measurement of amino acid incorporation. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3081-3088.	1.1	35
27	Editing of misaminoacylated tRNA controls the sensitivity of amino acid stress responses in Saccharomyces cerevisiae. Nucleic Acids Research, 2017, 45, 3985-3996.	6.5	29
28	Comparative Proteomics Enables Identification of Nonannotated Cold Shock Proteins in <i>E. coli</i> . Journal of Proteome Research, 2017, 16, 3722-3731.	1.8	23
29	Heterogeneity of Stop Codon Readthrough in Single Bacterial Cells and Implications for Population Fitness. Molecular Cell, 2017, 67, 826-836.e5.	4.5	40
30	The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function. Molecular Biology of the Cell, 2017, 28, 261-269.	0.9	73
31	Genome mining unearths a hybrid nonribosomal peptide synthetase-like-pteridine synthase biosynthetic gene cluster. ELife, 2017, 6, .	2.8	18
32	Expression of Recombinant Phosphoproteins for Signal Transduction Studies. Methods in Molecular Biology, 2017, 1636, 71-78.	0.4	3
33	SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule. Journal of Physiology, 2016, 594, 4945-4966.	1.3	43
34	Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. Journal of Clinical Investigation, 2016, 126, 4361-4371.	3.9	173
35	A flexible codon in genomically recoded Escherichia coli permits programmable protein phosphorylation. Nature Communications, 2015, 6, 8130.	5.8	86
36	Chemical Evolution of a Bacterial Proteome. Angewandte Chemie - International Edition, 2015, 54, 10030-10034.	7.2	71

Jesse Rinehart

#	Article	IF	CITATIONS
37	Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nature Biotechnology, 2015, 33, 1272-1279.	9.4	234
38	Revealing the amino acid composition of proteins within an expanded genetic code. Nucleic Acids Research, 2015, 43, e8-e8.	6.5	68
39	Recoded organisms engineered to depend on synthetic amino acids. Nature, 2015, 518, 89-93.	13.7	288
40	Src-family protein tyrosine kinase phosphorylates WNK4 and modulates its inhibitory effect on KCNJ1 (ROMK). Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4495-4500.	3.3	20
41	Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6637-6642.	3.3	240
42	Robust production of recombinant phosphoproteins using cell-free protein synthesis. Nature Communications, 2015, 6, 8168.	5.8	106
43	YPED: An Integrated Bioinformatics Suite and Database for Mass Spectrometry-based Proteomics Research. Genomics, Proteomics and Bioinformatics, 2015, 13, 25-35.	3.0	15
44	The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Molecular Cell, 2015, 60, 7-20.	4.5	658
45	Reducing the genetic code induces massive rearrangement of the proteome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17206-17211.	3.3	13
46	Designed Phosphoprotein Recognition in <i>Escherichia coli</i> . ACS Chemical Biology, 2014, 9, 2502-2507.	1.6	20
47	Genomically Recoded Organisms Expand Biological Functions. Science, 2013, 342, 357-360.	6.0	721
48	Src Family Protein Tyrosine Kinase Regulates the Basolateral K Channel in the Distal Convoluted Tubule (DCT) by Phosphorylation of KCNJ10 Protein. Journal of Biological Chemistry, 2013, 288, 26135-26146.	1.6	47
49	Srcâ€family tyrosine kinase (SFK) phosphorylates Withâ€No―Lysine Kinase4 (WNK4) and modulates the inhibitory effect of WNK4 on ROMK channels FASEB Journal, 2013, 27, 911.2.	0.2	0
50	Srcâ€family protein tyrosine kinase (SFK) stimulates KCNJ10 K channels in the basolateral membrane of distal convoluted tubules (DCT) FASEB Journal, 2013, 27, 911.1.	0.2	0
51	Protein Aggregation Caused by Aminoglycoside Action Is Prevented by a Hydrogen Peroxide Scavenger. Molecular Cell, 2012, 48, 713-722.	4.5	98
52	Enhanced phosphoserine insertion during <i>Escherichia coli</i> protein synthesis via partial UAG codon reassignment and release factor 1 deletion. FEBS Letters, 2012, 586, 3716-3722.	1.3	91
53	Expanding the Genetic Code of <i>Escherichia coli</i> with Phosphoserine. Science, 2011, 333, 1151-1154.	6.0	316
54	WNK2 Kinase Is a Novel Regulator of Essential Neuronal Cation-Chloride Cotransporters. Journal of Biological Chemistry, 2011, 286, 30171-30180.	1.6	73

#	Article	IF	CITATIONS
55	Determinants of erythrocyte hydration. Current Opinion in Hematology, 2010, 17, 1.	1.2	17
56	Sites of Regulated Phosphorylation that Control K-Cl Cotransporter Activity. Cell, 2009, 138, 525-536.	13.5	269
57	WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16777-16782.	3.3	167