Nicholas E S Sibinga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9497878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Absence of heme oxygenaseâ€1 exacerbates atherosclerotic lesion formation and vascular remodeling. FASEB Journal, 2003, 17, 1759-1761.	0.5	261
2	A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nature Genetics, 2017, 49, 1437-1449.	21.4	199
3	UPREGULATION OF CYTOKINES ASSOCIATED WITH MACROPHAGE ACTIVATION IN THE LEWIS-TO-F344 RAT TRANSPLANTATION MODEL OF CHRONIC CARDIAC REJECTION1,2. Transplantation, 1995, 59, 572-578.	1.0	133
4	FAT1 mutations cause a glomerulotubular nephropathy. Nature Communications, 2016, 7, 10822.	12.8	99
5	The Fat1 cadherin integrates vascular smooth muscle cell growth and migration signals. Journal of Cell Biology, 2006, 173, 417-429.	5.2	88
6	Collagen VIII Is Expressed by Vascular Smooth Muscle Cells in Response to Vascular Injury. Circulation Research, 1997, 80, 532-541.	4.5	75
7	Embryonic Expression Suggests an Important Role for CRP2/SmLIM in the Developing Cardiovascular System. Circulation Research, 1998, 83, 980-985.	4.5	59
8	Cyclin A transcriptional suppression is the major mechanism mediating homocysteine-induced endothelial cell growth inhibition. Blood, 2002, 99, 939-945.	1.4	59
9	Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature, 2016, 539, 575-578.	27.8	52
10	Atrophin Proteins Interact with the Fat1 Cadherin and Regulate Migration and Orientation in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2009, 284, 6955-6965.	3.4	40
11	Plasminogen Is Not Required for Neointima Formation in a Mouse Model of Vein Graft Stenosis. Circulation Research, 1999, 84, 883-890.	4.5	37
12	Altered synaptic connectivity and brain function in mice lacking microglial adapter protein Iba1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	35
13	Uncontrolled angiogenic precursor expansion causes coronary artery anomalies in mice lacking Pofut1. Nature Communications, 2017, 8, 578.	12.8	32
14	β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nature Communications, 2016, 7, 12389.	12.8	31
15	Macrophage-restricted and Interferon γ-inducible Expression of the Allograft Inflammatory Factor-1 Gene Requires Pu.1. Journal of Biological Chemistry, 2002, 277, 16202-16210.	3.4	30
16	Protective role of chaperone-mediated autophagy against atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121133119.	7.1	29
17	Allograft inflammatory factor-1 supports macrophage survival and efferocytosis and limits necrosis in atherosclerotic plaques. Atherosclerosis, 2019, 289, 184-194.	0.8	26
18	Three-Dimensional Imaging Provides Detailed Atherosclerotic Plaque Morphology and Reveals Angiogenesis After Carotid Artery Ligation. Circulation Research, 2020, 126, 619-632.	4.5	25

NICHOLAS E S SIBINGA

#	Article	IF	CITATIONS
19	Loss of Allograft Inflammatory Factor-1 Ameliorates Experimental Autoimmune Encephalomyelitis by Limiting Encephalitogenic CD4 T-Cell Expansion. Molecular Medicine, 2015, 21, 233-241.	4.4	24
20	Genetic inactivation of the allograft inflammatory factorâ€l locus. Genesis, 2013, 51, 734-740.	1.6	18
21	Inhibition of Smooth Muscle β-Catenin Hinders Neointima Formation After Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 879-888.	2.4	17
22	Allograft Inflammatory Factor-1 Links T-Cell Activation, Interferon Response, and Macrophage Activation in Chronic Kawasaki Disease Arteritis. Journal of the Pediatric Infectious Diseases Society, 2017, 6, e94-e102.	1.3	16
23	Allograft inflammatory factor-1-like is not essential for age dependent weight gain or HFD-induced obesity and glucose insensitivity. Scientific Reports, 2020, 10, 3594.	3.3	10
24	Myocardial β-Catenin-BMP2 signaling promotes mesenchymal cell proliferation during endocardial cushion formation. Journal of Molecular and Cellular Cardiology, 2018, 123, 150-158.	1.9	8
25	Gastrointestinal angiodysplasia in heart failure and during CF LVAD support. Journal of Heart and Lung Transplantation, 2022, 41, 129-132.	0.6	8
26	Donor and Recipient Cell Surface Colony Stimulating Factor-1 Promote Neointimal Formation in Transplant-Associated Arteriosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 87-95.	2.4	7
27	Induction of interferon signaling and allograft inflammatory factor 1 in macrophages in a mouse model of breast cancer metastases. Wellcome Open Research, 2021, 6, 52.	1.8	6
28	PLX3397, a CSF1 receptor inhibitor, limits allotransplantation-induced vascular remodelling. Cardiovascular Research, 2022, 118, 2718-2731.	3.8	6
29	Daxx inhibits muscle differentiation by repressing E2Aâ€mediated transcription. Journal of Cellular Biochemistry, 2009, 107, 438-447.	2.6	5
30	Induction of interferon signaling and allograft inflammatory factor 1 in macrophages in a mouse model of breast cancer metastases. Wellcome Open Research, 2021, 6, 52.	1.8	5
31	The Atypical Cadherin FAT1 Limits Mitochondrial Respiration and Proliferation of Vascular Smooth Muscle Cells. Frontiers in Cardiovascular Medicine, 2022, 9, .	2.4	4
32	A Pair of ACEs, for Openers?. Circulation Research, 2000, 87, 523-525.	4.5	3
33	Stable protein, unstable plaque?. Journal of Molecular and Cellular Cardiology, 2009, 46, 289-291.	1.9	3
34	Channeling the homocysteine chapel. Blood, 2011, 118, 1717-1719.	1.4	3
35	Identification of Novel Biomarkers and Pathways for Coronary Artery Calcification in Nondiabetic Patients on Hemodialysis Using Metabolomic Profiling. Kidney360, 2021, 2, 279-289.	2.1	3
36	PDCD5 says no to NO. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4535-4537.	7.1	1

3

NICHOLAS E S SIBINGA

#	Article	IF	CITATIONS
37	Abstract 436: The Fat1 Cadherin Intracellular Domain Interacts with Atrophin Proteins and Recruits Robust Transcription Activity. Circulation, 2007, 116, .	1.6	0
38	Abstract 584: Allograft Inflammatory Factor-1 is Required for NfκB Pathway Activity in Macrophages and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, .	2.4	0
39	Three-Dimensional Visualization of Atherosclerotic Vessels by Tissue Clearing and Light-Sheet Fluorescence Microscopy. Methods in Molecular Biology, 2022, 2419, 841-851.	0.9	0
40	βâ€catenin Câ€terminal Domain/Sphingosineâ€1â€Phosphate Receptor 1 Axis is a Potential Therapeutic Target ir Vascular Remodeling. FASEB Journal, 2022, 36, .	0.5	0
41	Abstract P169: β-catenin C-terminal Domain/Sphingosine-1-Phosphate Receptor 1 Axis Drives Neointima Formation After Carotid Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, .	2.4	0
42	Abstract 33: β-Catenin Is Essential for Vascular Smooth Muscle Cell Survival and Artery Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, .	2.4	0