Joy Y Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9497074/publications.pdf

Version: 2024-02-01

56 papers	10,474 citations	126907 33 h-index	54 g-index
61	61	61	12335
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nature Communications, 2020, 11, 222.	12.8	1,376
2	Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine, 2017, 9, .	12.4	1,279
3	Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531, 381-385.	27.8	1,245
4	Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. MBio, 2018 , 9 , .	4.1	1,142
5	Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. Journal of Biological Chemistry, 2020, 295, 6785-6797.	3.4	752
6	The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. Journal of Biological Chemistry, 2020, 295, 4773-4779.	3.4	659
7	Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1- $\langle i \rangle f \langle i \rangle$][triazin-4-amino] Adenine $\langle i \rangle C \langle i \rangle$ -Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. Journal of Medicinal Chemistry, 2017, 60, 1648-1661.	6.4	547
8	Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses, 2019, 11, 326.	3.3	478
9	Remdesivir Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. Cell Reports, 2020, 32, 107940.	6.4	412
10	Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Research, 2019, 169, 104541.	4.1	398
11	Structural basis for RNA replication by the hepatitis C virus polymerase. Science, 2015, 347, 771-775.	12.6	294
12	Synthesis and antiviral activity of a series of $1\hat{a}\in^2$ -substituted 4-aza-7,9-dideazaadenosine C-nucleosides. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2705-2707.	2.2	173
13	Mechanistic Studies Examining the Efficiency and Fidelity of DNA Synthesis by the 3TC-Resistant Mutant (184V) of HIV-1 Reverse Transcriptaseâ€. Biochemistry, 1999, 38, 9440-9448.	2.5	123
14	Template-dependent inhibition of coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action. Journal of Biological Chemistry, 2020, 295, 16156-16165.	3.4	120
15	Sensitivity of Mitochondrial Transcription and Resistance of RNA Polymerase II Dependent Nuclear Transcription to Antiviral Ribonucleosides. PLoS Pathogens, 2012, 8, e1003030.	4.7	119
16	Discovery of the First <i>C</i> -Nucleoside HCV Polymerase Inhibitor (GS-6620) with Demonstrated Antiviral Response in HCV Infected Patients. Journal of Medicinal Chemistry, 2014, 57, 1812-1825.	6.4	108
17	Mechanism of Action of $1\cdot \hat{l}^2$ - d -2,6-Diaminopurine Dioxolane, a Prodrug of the Human Immunodeficiency Virus Type 1 Inhibitor $1\cdot \hat{l}^2$ - d -Dioxolane Guanosine. Antimicrobial Agents and Chemotherapy, 2001, 45, 158-165.	3.2	81
18	Mechanistic Studies Comparing the Incorporation of (+) and (â^') Isomers of 3TCTP by HIV-1 Reverse Transcriptaseâ€. Biochemistry, 1999, 38, 55-63.	2.5	78

#	Article	IF	CITATIONS
19	Relationship between Antiviral Activity and Host Toxicity: Comparison of the Incorporation Efficiencies of 2′,3′-Dideoxy-5-Fluoro-3′-Thiacytidine-Triphosphate Analogs by Human Immunodeficiency Virus Type 1 Reverse Transcriptase and Human Mitochondrial DNA Polymerase. Antimicrobial Agents and Chemotherapy, 2004, 48, 1300-1306.	3.2	71
20	The K65R Reverse Transcriptase Mutation in HIV-1 Reverses the Excision Phenotype of Zidovudine Resistance Mutations. Antiviral Therapy, 2006, 11, 155-163.	1.0	69
21	Role of Mitochondrial RNA Polymerase in the Toxicity of Nucleotide Inhibitors of Hepatitis C Virus. Antimicrobial Agents and Chemotherapy, 2016, 60, 806-817.	3.2	68
22	Mechanistic studies show that (â^')â€FTCâ€TP is a better inhibitor of HIVâ€1 reverse transcriptase than 3TCâ€TP. FASEB Journal, 1999, 13, 1511-1517.	0.5	66
23	The A62V and S68G Mutations in HIV-1 Reverse Transcriptase Partially Restore the Replication Defect Associated With the K65R Mutation. Journal of Acquired Immune Deficiency Syndromes (1999), 2008, 48, 428-436.	2.1	58
24	Biochemical characterization of tirabrutinib and other irreversible inhibitors of Bruton's tyrosine kinase reveals differences in on - and off - target inhibition. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129531.	2.4	57
25	The triple combination of tenofovir, emtricitabine and efavirenz shows synergistic anti-HIV-1 activity in vitro: a mechanism of action study. Retrovirology, 2009, 6, 44.	2.0	56
26	Therapeutic treatment with an oral prodrug of the remdesivir parental nucleoside is protective against SARS-CoV-2 pathogenesis in mice. Science Translational Medicine, 2022, 14, eabm3410.	12.4	49
27	Addressing the selectivity and toxicity of antiviral nucleosides. Antiviral Chemistry and Chemotherapy, 2018, 26, 204020661875852.	0.6	45
28	Inhibition of Hepatitis C Virus Replication by GS-6620, a Potent <i>C</i> -Nucleoside Monophosphate Prodrug. Antimicrobial Agents and Chemotherapy, 2014, 58, 1930-1942.	3.2	38
29	Off-Target $\langle i \rangle$ In Vitro $\langle j \rangle$ Profiling Demonstrates that Remdesivir Is a Highly Selective Antiviral Agent. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	38
30	Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice. Cell Reports, 2021, 36, 109450.	6.4	38
31	Synthesis and characterization of 2′-C-Me branched C-nucleosides as HCV polymerase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4127-4132.	2.2	37
32	Key Metabolic Enzymes Involved in Remdesivir Activation in Human Lung Cells. Antimicrobial Agents and Chemotherapy, 2021, 65, e0060221.	3.2	37
33	In Vitro Combination of Amdoxovir and the Inosine Monophosphate Dehydrogenase Inhibitors Mycophenolic Acid and Ribavirin Demonstrates Potent Activity against Wild-Type and Drug-Resistant Variants of Human Immunodeficiency Virus Type 1. Antimicrobial Agents and Chemotherapy, 2004, 48, 4387-4394.	3.2	35
34	The K65R reverse transcriptase mutation in HIV-1 reverses the excision phenotype of zidovudine resistance mutations. Antiviral Therapy, 2006, 11, 155-63.	1.0	34
35	Dioxolane Guanosine 5′-Triphosphate, an Alternative Substrate Inhibitor of Wild-type and Mutant HIV-1 Reverse Transcriptase. Journal of Biological Chemistry, 2003, 278, 18971-18979.	3.4	32
36	Virologic and Enzymatic Studies Revealing the Mechanism of K65R- and Q151M-Associated HIV-1 Drug Resistance Towards Emtricitabine and Lamivudine. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 89-107.	1.1	25

#	Article	IF	CITATIONS
37	Efficient incorporation and template-dependent polymerase inhibition are major determinants for the broad-spectrum antiviral activity of remdesivir. Journal of Biological Chemistry, 2022, 298, 101529.	3.4	25
38	Discovery of β-d-2′-deoxy-2′-α-fluoro-4′-α-cyano-5-aza-7,9-dideaza adenosine as a potent nucleoside inhi of respiratory syncytial virus with excellent selectivity over mitochondrial RNA and DNA polymerases. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2484-2487.	bitor 2.2	23
39	Anabolism of amdoxovir: phosphorylation of dioxolane guanosine and its 5′-phosphates by mammalian phosphotransferases. Biochemical Pharmacology, 2004, 68, 1879-1888.	4.4	20
40	Nucleoside Diphosphate Kinase and the Activation of Antiviral Phosphonate Analogs of Nucleotides: Binding Mode and Phosphorylation of Tenofovir Derivatives. Nucleosides, Nucleotides and Nucleic Acids, 2009, 28, 776-792.	1.1	18
41	Remdesivir Potently Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. SSRN Electronic Journal, 0, , .	0.4	15
42	Deoxythioguanosine triphosphate impairs HIV replication: a new mechanism for an old drug. FASEB Journal, 2001, 15, 1902-1908.	0.5	13
43	Discovery of Potent and Selective MTH1 Inhibitors for Oncology: Enabling Rapid Target (In)Validation. ACS Medicinal Chemistry Letters, 2020, 11 , $358-364$.	2.8	11
44	Biochemical characterization of recombinant influenza A polymerase heterotrimer complex: Polymerase activity and mechanisms of action of nucleotide analogs. PLoS ONE, 2017, 12, e0185998.	2.5	10
45	Dead-end complexes contribute to the synergistic inhibition of HIV-1 RT by the combination of rilpivirine, emtricitabine, and tenofovir. Antiviral Research, 2014, 101, 131-135.	4.1	9
46	The Nucleoside/Nucleotide Analogs Tenofovir and Emtricitabine Are Inactive against SARS-CoV-2. Molecules, 2022, 27, 4212.	3.8	9
47	Effects of HIV Q151M-associated multi-drug resistance mutations on the activities of (â^')-β-d-1′,3′-dioxolan guanine. Antiviral Research, 2005, 66, 153-158.	4.1	7
48	Discovery of a 2′-fluoro-2′- C -methyl C -nucleotide HCV polymerase inhibitor and a phosphoramidate prodrug with favorable properties. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1840-1847.	2.2	7
49	Role of Mitochondrial Toxicity in BMS-986094-Induced Toxicity. Toxicological Sciences, 2017, 155, 2-2.	3.1	7
50	Nucleotide Prodrug Containing a Nonproteinogenic Amino Acid To Improve Oral Delivery of a Hepatitis C Virus Treatment. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	6
51	HCV RdRp, sofosbuvir and beyond. The Enzymes, 2021, 49, 63-82.	1.7	5
52	Biochemical characterization of recombinant influenza A polymerase heterotrimer complex: Endonuclease activity and evaluation of inhibitors. PLoS ONE, 2017, 12, e0181969.	2.5	4
53	Reply to Yan and Muller, "Remdesivir for COVID-19: Why Not Dose Higher?― Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	2
54	Species-Specific Urothelial Toxicity With an Anti-HIV Noncatalytic Site Integrase Inhibitor (NCINI) Is Related to Unusual pH-Dependent Physicochemical Changes. Toxicological Sciences, 2021, 183, 105-116.	3.1	1

#	Article	lF	CITATIONS
55	Semiâ€Mechanistic PK/PD Modeling and Simulation of Irreversible BTK Inhibition to Support Dose Selection of Tirabrutinib in Subjects with RA. Clinical Pharmacology and Therapeutics, 2022, 111, 416-424.	4.7	1
56	Reply to Yan and Muller, "Single-Cell RNA Sequencing Supports Preferential Bioactivation of Remdesivir in the Liver― Antimicrobial Agents and Chemotherapy, 2021, 65, e0139421.	3.2	0