Ulrich Callies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9497033/publications.pdf

Version: 2024-02-01

471509 454955 2,122 31 17 30 citations h-index g-index papers 51 51 51 3095 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Substrate-Controlled Succession of Marine Bacterioplankton Populations Induced by a Phytoplankton Bloom. Science, 2012, 336, 608-611.	12.6	1,304
2	The North Sea — A shelf sea in the Anthropocene. Journal of Marine Systems, 2015, 141, 18-33.	2.1	99
3	Regional Meteorological–Marine Reanalyses and Climate Change Projections. Bulletin of the American Meteorological Society, 2009, 90, 849-860.	3.3	98
4	Marine litter ensemble transport simulations in the southern North Sea. Marine Pollution Bulletin, 2014, 86, 219-228.	5.0	88
5	Potential Impacts of Offshore Wind Farms on North Sea Stratification. PLoS ONE, 2016, 11, e0160830.	2.5	55
6	Pelagic effects of offshore wind farm foundations in the stratified North Sea. Progress in Oceanography, 2017, 156, 154-173.	3.2	51
7	Short-Term Dynamics of North Sea Bacterioplankton-Dissolved Organic Matter Coherence on Molecular Level. Frontiers in Microbiology, 2016, 7, 321.	3.5	48
8	Particle tracking in the vicinity of Helgoland, North Sea: a model comparison. Ocean Dynamics, 2011, 61, 2121-2139.	2.2	39
9	Surface drifters in the German Bight: model validation considering windage and Stokes drift. Ocean Science, 2017, 13, 799-827.	3.4	34
10	Implications of using chemical dispersants to combat oil spills in the German Bight – Depiction by means of a Bayesian network. Environmental Pollution, 2019, 248, 609-620.	7.5	31
11	Model-based long-term reconstruction of weather-driven variations in chronic oil pollution along the German North Sea coast. Marine Pollution Bulletin, 2009, 58, 967-975.	5.0	28
12	The potential for dispersant use as a maritime oil spill response measure in German waters. Marine Pollution Bulletin, 2018, 129, 623-632.	5.0	25
13	The science-policy interface of risk-based freshwater and marine management systems: From concepts to practical tools. Journal of Environmental Management, 2018, 226, 340-346.	7.8	24
14	Variation that can be expected when using particle tracking models in connectivity studies. Journal of Sea Research, 2017, 127, 133-149.	1.6	23
15	German Bight residual current variability on a daily basis: principal components of multi-decadal barotropic simulations. Geo-Marine Letters, 2017, 37, 151-162.	1.1	23
16	A probabilistic model of decision making regarding the use of chemical dispersants to combat oil spills in the German Bight. Water Research, 2020, 169, 115196.	11.3	21
17	Estimation of the impact of prevailing weather conditions on the occurrence of oil-contaminated dead birds on the German North Sea coast. Environmental Pollution, 2009, 157, 194-198.	7. 5	19
18	A simple Lagrangian model to simulate temporal variability of algae in the Elbe River. Ecological Modelling, 2009, 220, 2173-2186.	2.5	16

#	Article	IF	CITATIONS
19	Interactive impacts of meteorological and hydrological conditions on the physical and biogeochemical structure of a coastal system. Biogeosciences, 2020, 17, 5097-5127.	3.3	14
20	Mean spring conditions at Helgoland Roads, North Sea: Graphical modeling of the influence of hydro-climatic forcing and Elbe River discharge. Journal of Sea Research, 2015, 101, 1-11.	1.6	12
21	Submesoscale dispersion of surface drifters in a coastal sea near offshore wind farms. Ocean Science, 2019, 15, 865-889.	3.4	8
22	Sensitive dependence of trajectories on tracer seeding positions – coherent structures in German Bight backward drift simulations. Ocean Science, 2021, 17, 527-541.	3.4	8
23	Interaction structures analysed from water-quality data. Ecological Modelling, 2005, 187, 475-490.	2.5	7
24	Effects of chemical dispersants on oil spill drift paths in the German Bightâ€"probabilistic assessment based on numerical ensemble simulations. Geo-Marine Letters, 2017, 37, 163-170.	1.1	7
25	Residence times in shallow waters help explain regional differences in Wadden Sea eutrophication. Geo-Marine Letters, 2017, 37, 171-177.	1.1	7
26	On Using Lagrangian Drift Simulations to Aid Interpretation of in situ Monitoring Data. Frontiers in Marine Science, 2021, 8, .	2.5	5
27	A Bayesian Approach to the Estimation of Parameters and Their Interdependencies in Environmental Modeling. Entropy, 2022, 24, 231.	2.2	5
28	Using a Bayesian Network to Summarize Variability in Numerical Long-Term Simulations of a Meteorological–Marine System: Drift Climatology of Assumed Oil Spills in the North Sea. Environmental Modeling and Assessment, 2011, 16, 1-14.	2.2	4
29	Long-Term Model Simulation of Environmental Conditions to Identify Externally Forced Signals in Biological Time Series. , 2010, , 155-162.		4
30	Comparative Forecast Evaluation: Graphical Gaussian Models and Sufficiency Relations. Monthly Weather Review, 2000, 128, 1912-1924.	1.4	3
31	Mesoscale Advective and Biological Processes Alter Carbon Uptake Capacity in a Shelf Sea. Frontiers in Marine Science, 2022, 9, .	2.5	O