Ronald P Hart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9496922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	mRNA-Decapping Associated DcpS Enzyme Controls Critical Steps of Neuronal Development. Cerebral Cortex, 2022, 32, 1494-1507.	1.6	2
2	Optimized splitting of mixed-species RNA sequencing data. Journal of Bioinformatics and Computational Biology, 2022, 20, 2250001.	0.3	1
3	Type-I-interferon signaling drives microglial dysfunction and senescence in human iPSC models of Down syndrome and Alzheimer's disease. Cell Stem Cell, 2022, 29, 1135-1153.e8.	5.2	45
4	Genomeâ€wide admixture mapping of <scp>DSMâ€IV</scp> alcohol dependence, criterion count, and the selfâ€rating of the effects of ethanol in African American populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2021, 186, 151-161.	1.1	11
5	Lowâ€Density Lipoprotein Receptorâ€Related Protein 6 Cell Surface Availability Regulates Fuel Metabolism in Astrocytes. Advanced Science, 2021, 8, 2004993.	5.6	7
6	Addiction associated N40D mu-opioid receptor variant modulates synaptic function in human neurons. Molecular Psychiatry, 2020, 25, 1406-1419.	4.1	29
7	Elevated Choline Kinase α–Mediated Choline Metabolism Supports the Prolonged Survival of TRAF3-Deficient B Lymphocytes. Journal of Immunology, 2020, 204, 459-471.	0.4	13
8	Modelling the single most common SNP in OPRM1 (A118G) using human neurons generated from two sets of independently targeted isogenic stem cell lines. Molecular Psychiatry, 2020, 25, 1355-1355.	4.1	2
9	Differential sensitivity of human neurons carrying $\hat{I}4$ opioid receptor (MOR) N40D variants in response to ethanol. Alcohol, 2020, 87, 97-109.	0.8	12
10	Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nature Communications, 2020, 11, 1577.	5.8	108
11	Development of a high-throughput arrayed neural circuitry platform using human induced neurons for drug screening applications. Lab on A Chip, 2020, 20, 1140-1152.	3.1	20
12	Translational derepression of Elavl4Âisoforms at their alternative 5′ UTRs determines neuronal development. Nature Communications, 2020, 11, 1674.	5.8	40
13	Compartmentalized Devices as Tools for Investigation of Human Brain Network Dynamics. Developmental Dynamics, 2019, 248, 65-77.	0.8	22
14	OLIG2 Drives Abnormal Neurodevelopmental Phenotypes in Human iPSC-Based Organoid and Chimeric Mouse Models of Down Syndrome. Cell Stem Cell, 2019, 24, 908-926.e8.	5.2	122
15	Structural and mechanistic basis of mammalian Nudt12 RNA deNADding. Nature Chemical Biology, 2019, 15, 575-582.	3.9	49
16	Synaptic mechanism of A118G OPRM1 Gene Variants In Human Neurons. European Neuropsychopharmacology, 2019, 29, S732-S733.	0.3	2
17	Optogenetic and transcriptomic interrogation of enhanced muscle function in the paralyzed mouse whisker pad. Journal of Neurophysiology, 2019, 121, 1491-1500.	0.9	6
18	ATM is activated by ATP depletion and modulates mitochondrial function through NRF1. Journal of Cell Biology, 2019, 218, 909-928.	2.3	55

#	Article	IF	CITATIONS
19	Histone acetylation maps in aged mice developmentally exposed to lead: epigenetic drift and Alzheimer-related genes. Epigenomics, 2018, 10, 573-583.	1.0	15
20	DNA methylome and transcriptome alterations and cancer prevention by curcumin in colitis-accelerated colon cancer in mice. Carcinogenesis, 2018, 39, 669-680.	1.3	95
21	Knockdown of Butyrylcholinesterase but Not Inhibition by Chlorpyrifos Alters Early Differentiation Mechanisms in Human Neural Stem Cells. Toxics, 2018, 6, 52.	1.6	5
22	Epigenetic alterations in TRAMP mice: epigenome DNA methylation profiling using MeDIP-seq. Cell and Bioscience, 2018, 8, 3.	2.1	21
23	hsa-let-7c miRNA Regulates Synaptic and Neuronal Function in Human Neurons. Frontiers in Synaptic Neuroscience, 2018, 10, 19.	1.3	24
24	Neural progenitors derived from Tuberous Sclerosis Complex patients exhibit attenuated PI3K/AKT signaling and delayed neuronal differentiation. Molecular and Cellular Neurosciences, 2018, 92, 149-163.	1.0	36
25	Genetics of Alcohol Use Disorder: A Role for Induced Pluripotent Stem Cells?. Alcoholism: Clinical and Experimental Research, 2018, 42, 1572-1590.	1.4	11
26	Mechanisms of colitis-accelerated colon carcinogenesis and its prevention with the combination of aspirin and curcumin: Transcriptomic analysis using RNA-seq. Biochemical Pharmacology, 2017, 135, 22-34.	2.0	32
27	5′ End Nicotinamide Adenine Dinucleotide Cap in Human Cells Promotes RNA Decay through DXO-Mediated deNADding. Cell, 2017, 168, 1015-1027.e10.	13.5	184
28	Top2b is involved in the formation of outer segment and synapse during lateâ€stage photoreceptor differentiation by controlling key genes of photoreceptor transcriptional regulatory network. Journal of Neuroscience Research, 2017, 95, 1951-1964.	1.3	13
29	μNeurocircuitry: Establishing <i>in vitro</i> models of neurocircuits with human neurons. Technology, 2017, 05, 87-97.	1.4	25
30	DMRfinder: efficiently identifying differentially methylated regions from MethylC-seq data. BMC Bioinformatics, 2017, 18, 528.	1.2	70
31	<i>Intellicount</i> : High-Throughput Quantification of Fluorescent Synaptic Protein Puncta by Machine Learning. ENeuro, 2017, 4, ENEURO.0219-17.2017.	0.9	42
32	The RNA binding protein HuR determines the differential translation of autism-associated FoxP subfamily members in the developing neocortex. Scientific Reports, 2016, 6, 28998.	1.6	36
33	Bioinformatic Analysis of DNA Methylation in Neural Progenitor Cell Models of Alcohol Abuse. Current Pharmacology Reports, 2016, 2, 203-210.	1.5	Ο
34	Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds. Nature Communications, 2016, 7, 10862.	5.8	109
35	Increased nicotine response in iPSC-derived human neurons carrying the CHRNA5 N398 allele. Scientific Reports, 2016, 6, 34341.	1.6	32
36	The impact of glutamine supplementation on the symptoms of ataxia-telangiectasia: a preclinical assessment. Molecular Neurodegeneration, 2016, 11, 60.	4.4	29

#	Article	IF	CITATIONS
37	Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Molecular Brain, 2016, 9, 51.	1.3	30
38	Long noncoding RNAs: Central to nervous system development. International Journal of Developmental Neuroscience, 2016, 55, 109-116.	0.7	34
39	Nudt3 is an mRNA decapping enzyme that modulates cell migration. Rna, 2016, 22, 773-781.	1.6	50
40	Spontaneous ATM Gene Reversion in A-T iPSC to Produce an Isogenic Cell Line. Stem Cell Reports, 2015, 5, 1097-1108.	2.3	13
41	Association of aberrant DNA methylation in Apcmin/+ mice with the epithelial-mesenchymal transition and Wnt/β-catenin pathways: genome-wide analysis using MeDIP-seq. Cell and Bioscience, 2015, 5, 24.	2.1	10
42	Flipping the transcriptional switch from myelin inhibition to axon growth in the CNS. Frontiers in Molecular Neuroscience, 2015, 8, 34.	1.4	3
43	Alteration in 5-hydroxymethylcytosine-mediated epigenetic regulation leads to Purkinje cell vulnerability in ATM deficiency. Brain, 2015, 138, 3520-3536.	3.7	69
44	Metallothionein-I/II Promotes Axonal Regeneration in the Central Nervous System. Journal of Biological Chemistry, 2015, 290, 16343-16356.	1.6	22
45	Thalamic WNT3 Secretion Spatiotemporally Regulates the Neocortical Ribosome Signature and mRNA Translation to Specify Neocortical Cell Subtypes. Journal of Neuroscience, 2015, 35, 10911-10926.	1.7	50
46	Mutated in colorectal cancer (MCC) is a novel oncogene in B lymphocytes. Journal of Hematology and Oncology, 2014, 7, 56.	6.9	18
47	Transcriptomic profiling of splenic B lymphomas spontaneously developed in B cell-specific TRAF3-deficient mice. Genomics Data, 2014, 2, 386-388.	1.3	1
48	Temporally defined neocortical translation and polysome assembly are determined by the RNA-binding protein Hu antigen R. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3815-24.	3.3	99
49	Genome-wide analysis of DNA methylation in UVB- and DMBA/TPA-induced mouse skin cancer models. Life Sciences, 2014, 113, 45-54.	2.0	20
50	A Positive Feedback Mechanism That Regulates Expression of miR-9 during Neurogenesis. PLoS ONE, 2014, 9, e94348.	1.1	28
51	EZH2-mediated H3K27 trimethylation mediates neurodegeneration in ataxia-telangiectasia. Nature Neuroscience, 2013, 16, 1745-1753.	7.1	143
52	Post-transcriptional regulatory elements and spatiotemporal specification of neocortical stem cells and projection neurons. Neuroscience, 2013, 248, 499-528.	1.1	46
53	Glutamate dehydrogenase 1 and SIRT4 regulate glial development. Glia, 2013, 61, 394-408.	2.5	52
54	Secretory Leukocyte Protease Inhibitor Reverses Inhibition by CNS Myelin, Promotes Regeneration in the Optic Nerve, and Suppresses Expression of the Transforming Growth Factor-l ² Signaling Protein Smad2. Journal of Neuroscience, 2013, 33, 5138-5151.	1.7	36

#	Article	IF	CITATIONS
55	Epigenome Analysis of Pluripotent Stem Cells. Methods in Molecular Biology, 2013, 997, 203-216.	0.4	2
56	Multiple knockout mouse models reveal lincRNAs are required for life and brain development. ELife, 2013, 2, e01749.	2.8	609
57	Biobanking in the Era of the Stem Cell: A Technical and Operational Guide. Colloquium Series on Stem Cell Biology, 2012, 1, 1-86.	0.0	6
58	Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nature Medicine, 2012, 18, 783-790.	15.2	185
59	miR-886-3p Levels Are Elevated in Friedreich Ataxia. Journal of Neuroscience, 2012, 32, 9369-9373.	1.7	35
60	lsolation of a novel rat neural progenitor clone that expresses <i>dlx</i> family transcription factors and gives rise to functional gabaergic neurons in culture. Developmental Neurobiology, 2012, 72, 805-820.	1.5	11
61	Cysteine―and glycineâ€rich protein 1a is involved in spinal cord regeneration in adult zebrafish. European Journal of Neuroscience, 2012, 35, 353-365.	1.2	29
62	Expression profiling of synaptic microRNAs from the adult rat brain identifies regional differences and seizure-induced dynamic modulation. Brain Research, 2012, 1436, 20-33.	1.1	68
63	Abstract LB-272: A novel isoform of Sox5 is expressed in TRAF3-deficient mouse B lymphomas. , 2012, , .		0
64	Comparison of Microarray and Quantitative Real-Time PCR Methods for Measuring MicroRNA Levels in MSC Cultures. Methods in Molecular Biology, 2011, 698, 419-429.	0.4	31
65	Transcription factor Sox11b is involved in spinal cord regeneration in adult zebrafish. Neuroscience, 2011, 172, 329-341.	1.1	135
66	MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. European Journal of Neuroscience, 2011, 33, 1587-1597.	1.2	141
67	A high-resolution molecular-based panel of assays for identification and characterization of human embryonic stem cell lines. Stem Cell Research, 2010, 4, 92-106.	0.3	8
68	Differential regulation of microRNA stability. Rna, 2010, 16, 1032-1039.	1.6	253
69	Genome-wide analysis reveals methyl-CpG–binding protein 2–dependent regulation of microRNAs in a mouse model of Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18161-18166.	3.3	164
70	miRNA in pluripotent stem cells. Regenerative Medicine, 2010, 5, 545-555.	0.8	32
71	Efficient, high-throughput transfection of human embryonic stem cells. Stem Cell Research and Therapy, 2010, 1, 23.	2.4	49
72	Rapid Induction of Genes Associated with Tissue Protection and Neural Development in Contused Adult Spinal Cord after Radial Glial Cell Transplantation. Journal of Neurotrauma, 2009, 26, 979-993.	1.7	15

#	Article	IF	CITATIONS
73	Ago2 Immunoprecipitation Identifies Predicted MicroRNAs in Human Embryonic Stem Cells and Neural Precursors. PLoS ONE, 2009, 4, e7192.	1.1	103
74	Functional differentiation of a clone resembling embryonic cortical interneuron progenitors. Developmental Neurobiology, 2008, 68, 1549-1564.	1.5	13
75	Activated Notch1 maintains the phenotype of radial glial cells and promotes their adhesion to laminin by upregulating nidogen. Glia, 2008, 56, 646-658.	2.5	27
76	Concise Review: MicroRNA Expression in Multipotent Mesenchymal Stromal Cells. Stem Cells, 2008, 26, 356-363.	1.4	121
77	Small Molecule Activation of Adaptive Gene Expression. Annals of the New York Academy of Sciences, 2008, 1147, 383-394.	1.8	48
78	Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: Prediction of microRNA regulation by PDGF during osteogenesis. Experimental Hematology, 2008, 36, 1354-1369.e2.	0.2	88
79	The Analysis of MicroRNAs in Stem Cells. , 2008, , 141-167.		1
80	MicroRNA Expression Pattern of Undifferentiated and Differentiated Human Embryonic Stem Cells. Stem Cells and Development, 2007, 16, 1003-1016.	1.1	173
81	Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. Journal of Neurochemistry, 2007, 102, 37-50.	2.1	257
82	Bioinformatic analysis of neural stem cell differentiation. Journal of Biomolecular Techniques, 2007, 18, 205-12.	0.8	5
83	The Cytokine Interleukin-6 Is Sufficient But Not Necessary to Mimic the Peripheral Conditioning Lesion Effect on Axonal Growth. Journal of Neuroscience, 2006, 26, 5565-5573.	1.7	168
84	Protective autoimmunity: interferon-Î ³ enables microglia to remove glutamate without evoking inflammatory mediators. Journal of Neurochemistry, 2005, 92, 997-1009.	2.1	192
85	Tissue Inhibitor of Metalloproteinases-1 Stimulates Gene Expression in MDA-MB-435 Human Breast Cancer Cells by Means of its Ability to Inhibit Metalloproteinases. Breast Cancer Research and Treatment, 2005, 94, 185-193.	1.1	12
86	Molecular Control of Physiological and Pathological T-Cell Recruitment after Mouse Spinal Cord Injury. Journal of Neuroscience, 2005, 25, 6576-6583.	1.7	83
87	Rational Probe Optimization and Enhanced Detection Strategy for MicroRNAs Using Microarrays. RNA Biology, 2005, 2, 93-100.	1.5	58
88	Evaluation of sense-strand mRNA amplification by comparative quantitative PCR. BMC Genomics, 2004, 5, 76.	1.2	45
89	Intrinsic differences in brain and spinal cord mitochondria: Implication for therapeutic interventions. Journal of Comparative Neurology, 2004, 474, 524-534.	0.9	105
90	In Vivo Pharmacokinetics and Regulation of Gene Expression Profiles by Isothiocyanate Sulforaphane in the Rat. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 263-271.	1.3	207

#	Article	lF	CITATIONS
91	Mediators of ischemic preconditioning identified by microarray analysis of rat spinal cord. Experimental Neurology, 2004, 185, 81-96.	2.0	60
92	Characterization of spinal HSP72 induction and development of ischemic tolerance after spinal ischemia in rats. Experimental Neurology, 2004, 185, 97-108.	2.0	30
93	Screening anti-inflammatory compounds in injured spinal cord with microarrays: a comparison of bioinformatics analysis approaches. Physiological Genomics, 2004, 17, 201-214.	1.0	21
94	SCI-Base: An Open-Source Spinal Cord Injury Animal Experimentation Database. Lab Animal, 2004, 33, 35-41.	0.2	5
95	Microtubules are critical for radial glial morphology: Possible regulation by MAPs and MARKs. Glia, 2003, 44, 37-46.	2.5	24
96	Pathological CNS Autoimmune Disease Triggered by Traumatic Spinal Cord Injury: Implications for Autoimmune Vaccine Therapy. Journal of Neuroscience, 2002, 22, 2690-2700.	1.7	188
97	Cytokine activity contributes to induction of inflammatory cytokine mRNAs in spinal cord following contusion. Journal of Neuroscience Research, 2002, 68, 315-322.	1.3	136
98	Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiological Genomics, 2001, 7, 201-213.	1.0	139
99	Vasoactive Intestinal Peptide and Pituitary Adenylyl Cyclase-Activating Polypeptide Inhibit Tumor Necrosis Factor-α Production in Injured Spinal Cord and in Activated Microglia via a cAMP-Dependent Pathway. Journal of Neuroscience, 2000, 20, 3622-3630.	1.7	129
100	Cultured sympathetic neurons express functional interleukin-1 receptors. Journal of Neuroimmunology, 1998, 91, 43-54.	1.1	15
101	Localisation of mRNA for interleukin-1 receptor and interleukin-1 receptor antagonist in the rat ovary. Journal of Endocrinology, 1997, 152, 11-17.	1.2	36
102	Interleukin-1 involvement in the induction of leukemia inhibitory factor mRNA expression following axotomy of sympathetic ganglia. Journal of Neuroimmunology, 1996, 70, 181-190.	1.1	17
103	Expression of NK-1 Receptor mRNA in Murine T Lymphocytes. NeuroImmunoModulation, 1996, 3, 35-46.	0.9	37
104	Activation of acidic sphingomyelinase and protein kinase C is required for IL-1 induction of LIF mRNA in a schwann cell line. , 1996, 18, 49-58.		16
105	Interleukin-1β increases leukemia inhibitory factor mRNA levels through transient stimulation of transcription rate. Glia, 1996, 18, 141-151.	2.5	21
106	Cloning and Characterization of an Alternatively Processed Human Type II Interleukin-1 Receptor mRNA. Journal of Biological Chemistry, 1996, 271, 20965-20972.	1.6	72
107	Tumor necrosis factor-α induces substance P in sympathetic ganglia through sequential induction of interleukin-1 and leukemia inhibitory factor. Journal of Neurobiology, 1995, 28, 445-454.	3.7	52
108	Type 1 interleukin-1 receptor in the rat brain: Distribution, regulation, and relationship to sites of IL-1-induced cellular activation. Journal of Comparative Neurology, 1995, 361, 681-698.	0.9	433

#	Article	IF	CITATIONS
109	Identification of mRNAs Regulated by Interferon-Î ³ in Cultured Rat Astrocytes by PCR Differential Display. NeuroImmunoModulation, 1995, 2, 347-355.	0.9	21
110	Immune Cytokine Regulation of Sympathetic Ganglion Response to Injury. NeuroImmunoModulation, 1995, 2, 236-240.	0.9	5
111	Species-Specific Activity of Rat Recombinant Interleukin-1β. Journal of Interferon and Cytokine Research, 1995, 15, 985-992.	0.5	13
112	Lipopolysaccharide induces substance P in sympathetic ganglia via ganglionic interleukin-1 production. Journal of Neuroimmunology, 1994, 49, 51-58.	1.1	30
113	Interferon-Î ³ promotes cholinergic differentiation of embryonic septal nuclei and adjacent basal forebrain. Neuron, 1994, 12, 1149-1159.	3.8	56
114	Neurochemical development of the raphe after continuous prenatal cocaine exposure. Brain Research Bulletin, 1993, 31, 49-56.	1.4	5
115	Serotonin modulates the levels of mRNAs coding for thyrotropin-releasing hormone and preprotachykinin by different mechanisms in medullary raphe neurons. Molecular Brain Research, 1993, 17, 251-257.	2.5	9
116	An mRNA homologous to interleukin-1 receptor type I is expressed in cultured rat sympathetic ganglia. Journal of Neuroimmunology, 1993, 44, 49-56.	1.1	91
117	Development of substance p (sp)-containing cells in the central nervous system: Consequences of neurotransmitter co-localization. Progress in Neurobiology, 1991, 36, 1-21.	2.8	18
118	A comparison of substance P peptide and preprotachykinin mRNA levels during development of rat medullary raphe and neostriatum. International Journal of Developmental Neuroscience, 1991, 9, 47-49.	0.7	9
119	Serotonin regulation of neostriatal tachykinins following neonatal 6-hydroxydopamine lesions. Brain Research, 1991, 557, 31-36.	1.1	24
120	Serotonin regulation of tachykinin biosynthesis in the rat neostriatum. Brain Research, 1991, 546, 33-39.	1.1	60
121	Effects of Lymphokines on Substance P in Injured Ganglia of the Peripheral Nervous System. Annals of the New York Academy of Sciences, 1991, 632, 19-30.	1.8	14
122	Serotonin Innervation Affects SP Biosynthesis in Rat Neostriatum. Annals of the New York Academy of Sciences, 1991, 632, 485-487.	1.8	5
123	Post-transcriptional control of tryptophan hydroxylase gene expression in rat brain stem and pineal gland. Molecular and Cellular Neurosciences, 1991, 2, 71-77.	1.0	16
124	Both zimelidine and clorgyline decrease preprotachykinin mRNA in adult medullary raphe nuclei. Molecular and Cellular Neurosciences, 1991, 2, 139-144.	1.0	5
125	Substance P gene expression is regulated by interleukin-1 in cultured sympathetic ganglia. Journal of Neuroscience Research, 1991, 29, 282-291.	1.3	77
126	Interleukin-1 Specifically Increases Substance P in Injured Sympathetic Ganglia. Annals of the New York Academy of Sciences, 1990, 594, 222-230.	1.8	30

#	Article	IF	CITATIONS
127	Tryptophan hydroxylase inhibition increases preprotachykinin mRNA in developing and adult medullary raphe nuclei. Molecular Brain Research, 1990, 8, 113-119.	2.5	17
128	An enhancer-like element in the adenovirus E2 promoter contains sequences essential for uninduced and E1A-induced transcription Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 381-385.	3.3	158
129	Poly(A) site cleavage in a HeLa nuclear extract is dependent on downstream sequences. Cell, 1985, 43, 677-683.	13.5	160