Miroslav Å mÃ-d

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9496593/publications.pdf Version: 2024-02-01

567281 642732 42 616 15 23 citations h-index g-index papers 42 42 42 706 all docs docs citations times ranked citing authors

Μιροςι Ανλ ΔΜΔΑ

#	Article	IF	CITATIONS
1	Suppressed martensitic transformation under biaxial loading in low stacking fault energy metastable austenitic steels. Scripta Materialia, 2018, 147, 27-32.	5.2	54
2	X-ray Computed Tomographic Investigation of the Porosity and Morphology of Plasma Electrolytic Oxidation Coatings. ACS Applied Materials & Interfaces, 2016, 8, 8801-8810.	8.0	47
3	Load path change on superelastic NiTi alloys: In situ synchrotron XRD and SEM DIC. Acta Materialia, 2018, 144, 874-883.	7.9	42
4	Deformation mechanisms in a superelastic NiTi alloy: An in-situ high resolution digital image correlation study. Materials and Design, 2020, 191, 108622.	7.0	41
5	In situ characterization of a high work hardening Ti-6Al-4V prepared by electron beam melting. Acta Materialia, 2019, 179, 224-236.	7.9	39
6	Deformation and degradation of superelastic NiTi under multiaxial loading. Acta Materialia, 2019, 167, 149-158.	7.9	38
7	In situ characterization of work hardening and springback in grade 2 α-titanium under tensile load. Acta Materialia, 2019, 181, 87-98.	7.9	26
8	The effect of stress triaxiality on the phase transformation in transformation induced plasticity steels: Experimental investigation and modelling the transformation kinetics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140321.	5.6	25
9	The interplay between deformation mechanisms in austenitic 304 steel during uniaxial and equibiaxial loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138222.	5.6	21
10	Kinetic study of static recrystallization in an Fe–Al–O ultra-fine-grained nanocomposite. Philosophical Magazine Letters, 2017, 97, 379-385.	1.2	20
11	High Cycle Fatigue of Nickel-based Superalloy MAR-M 247 at High Temperatures. Procedia Engineering, 2014, 74, 329-332.	1.2	19
12	A High Resolution Digital Image Correlation Study under Multiaxial Loading. Experimental Mechanics, 2019, 59, 309-317.	2.0	19
13	Film growth and alloy enrichment during anodizing AZ31 magnesium alloy in fluoride/glycerol electrolytes of a range of water contents. Electrochimica Acta, 2016, 219, 28-37.	5.2	17
14	Grain orientation dependence of the forward and reverse fcc ↔ hcp transformation in FeMnSi-based shape memory alloys studied by in situ neutron diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 782, 139261.	5.6	17
15	High Cycle Fatigue Damage Mechanisms of MAR-M 247 Superalloy at High Temperatures. Transactions of the Indian Institute of Metals, 2016, 69, 393-397.	1.5	15
16	High Cycle Fatigue Data Transferability of MAR-M 247 Superalloy from Separately Cast Specimens to Real Gas Turbine Blade. Metals, 2020, 10, 1460.	2.3	15
17	Short fatigue crack behaviour under low cycle fatigue regime. International Journal of Fatigue, 2017, 103, 207-215.	5.7	14
18	Comparison of low cycle fatigue of ductile cast irons with different matrix alloyed with nickel. Procedia Engineering, 2010, 2, 2307-2316.	1.2	13

Miroslav ÅmÃð

#	Article	IF	CITATIONS
19	Effect of solution annealing on low cycle fatigue of 304L stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141807.	5.6	12
20	In-situ neutron diffraction study of thermal phase stability in a Î ³ -TiAl based alloy doped with Mo and/or C. Intermetallics, 2014, 54, 28-38.	3.9	11
21	Small fatigue crack propagation in Y2O3 strengthened steels. Journal of Nuclear Materials, 2014, 452, 370-377.	2.7	11
22	Effect of current density and behaviour of second phases in anodizing of a Mg-Zn-RE alloy in a fluoride/glycerol/water electrolyte. Journal of Solid State Electrochemistry, 2016, 20, 1155-1165.	2.5	11
23	Analysis of cyclic plastic response of nickel based IN738LC superalloy. International Journal of Fatigue, 2014, 65, 44-50.	5.7	10
24	Measurement and prediction of the transformation strain that controls ductility and toughness in advanced steels. Acta Materialia, 2020, 200, 246-255.	7.9	10
25	Effect of Solution Annealing on Fatigue Crack Propagation in the AISI 304L TRIP Steel. Materials, 2021, 14, 1331.	2.9	10
26	Deformation and fracture behavior of the P91 martensitic steel at high temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 672, 1-6.	5.6	9
27	Stage I fatigue cracking in MAR-M 247 superalloy at elevated temperatures. Procedia Structural Integrity, 2016, 2, 3018-3025.	0.8	8
28	Interaction of Creep and High Cycle Fatigue of IN 713LC Superalloy. Solid State Phenomena, 0, 258, 595-598.	0.3	7
29	Analysis of the Effective and Internal Cyclic Stress Components in the Inconel Superalloy Fatigued at Elevated Temperature. Advanced Materials Research, 0, 278, 393-398.	0.3	6
30	Description of short fatigue crack propagation under low cycle fatigue regime. Procedia Structural Integrity, 2016, 2, 3010-3017.	0.8	6
31	Behavior of Alloying Elements during Anodizing of Mg-Cu and Mg-W Alloys in a Fluoride/Glycerol Electrolyte. Journal of the Electrochemical Society, 2015, 162, C487-C494.	2.9	5
32	Low Cycle Fatigue of Cast Î ³ -TiAl Based Alloys at High Temperature. Key Engineering Materials, 0, 452-453, 421-424.	0.4	4
33	Development of advanced Fe–Al–O ODS alloy microstructure and properties due to heat treatment. Journal of Materials Research, 2020, 35, 2789-2797.	2.6	4
34	Advantageous Description of Short Fatigue Crack Growth Rates in Austenitic Stainless Steels with Distinct Properties. Metals, 2021, 11, 475.	2.3	4
35	Fatigue properties of B1914 superalloy at high temperatures. Procedia Structural Integrity, 2019, 23, 191-196.	0.8	3
36	Improved description of low-cycle fatigue behaviour of 316L steel under axial, torsional and combined loading using plastic J-integral. Theoretical and Applied Fracture Mechanics, 2022, 118, 103212.	4.7	3

Miroslav ÅmÃð

#	Article	IF	CITATIONS
37	Effect of Tensile Dwell on Low Cycle Fatigue of Cast Superalloy Inconel 792-5A at 800°C. Key Engineering Materials, 0, 488-489, 735-738.	0.4	0
38	Surface Relief Evolution in IN792-5A Nickel Superalloy under High Temperature Fatigue Straining with Hold Times. Key Engineering Materials, 0, 592-593, 429-432.	0.4	0
39	Description of Small Fatigue Crack Propagation in ODS Steel. Advanced Materials Research, 0, 891-892, 911-916.	0.3	0
40	Role of defects in fatigue damage mechanisms of cast polycrystalline superalloy MAR-M 247. MATEC Web of Conferences, 2014, 12, 03005.	0.2	0
41	A Numerical Analysis of Deformation Processes in Oxide Dispersion-Strengthened Materials - Influence of Dislocation-Particle Interactions. Solid State Phenomena, 0, 258, 106-109.	0.3	0
42	Interaction of fatigue and creep in MAR-M 247 superalloy. Procedia Structural Integrity, 2019, 23, 197-202.	0.8	0