
Naveen Bokka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9496075/publications.pdf Version: 2024-02-01

NAVEEN ROKKA

#	Article	IF	CITATIONS
1	A water destructible SnS ₂ QD/PVA film based transient multifunctional sensor and machine learning assisted stimulus identification for non-invasive personal care diagnostics. Materials Advances, 2020, 1, 2818-2830.	5.4	23
2	A highly electropositive ReS ₂ based ultra-sensitive flexible humidity sensor for multifunctional applications. New Journal of Chemistry, 2021, 45, 5855-5862.	2.8	21
3	A detailed comparative performance analysis of the Transition Metal Di-chalcogenides (TMDs) based strain sensors through experimental realisations and first principle calculations. FlatChem, 2022, 32, 100344.	5.6	19
4	Non-contact, controlled and moisture triggered black phosphorus quantum dots/PVA film for transient electronics applications. Materials Letters, 2021, 290, 129477.	2.6	9
5	Deep learning enabled classification of real-time respiration signals acquired by MoSSe quantum dot-based flexible sensors. Journal of Materials Chemistry B, 2021, 9, 6870-6880.	5.8	8
6	Water soluble flexible and wearable electronic devices: a review. Flexible and Printed Electronics, 2021, 6, 043006.	2.7	6
7	Sublimation of MXene/camphor device: a study on self – destructive dry transiency. Materials Advances, 0, , .	5.4	6
8	Large area deposition of Janus MoS _{2x} Se _{2(xâ^'1)} on paper as a multifunctional electromechanical sensor for versatile physiological signal monitoring. Flexible and Printed Electronics, 2021, 6, 015011.	2.7	3
9	Investigation of the Transduction Mechanism of Few Layer SnSâ., for Pressure and Strain Sensing: Experimental Correlation With First Principles Study. IEEE Sensors Journal, 2021, 21, 17254-17261.	4.7	3
10	Remarkably Stable Black Phosphorus Quantum Dots-Polyvinyl Alcohol Film as a Water Soluble Breath Sensor. IEEE Transactions on Electron Devices, 2021, 68, 5167-5172.	3.0	2
11	A <scp>waterâ€soluble</scp> micropatterned <scp>MoS₂</scp> quantum dots/polyvinyl alcohol film as a transient contact (pressure) and <scp>nonâ€contact</scp> (humidity) as touch and proximity sensor. Journal of Applied Polymer Science, 2022, 139, 51711.	2.6	1
12	Carbon Nanomaterials for Emerging Electronic Devices and Sensors. Advances in Sustainability Science and Technology, 2021, , 215-258.	0.6	0